Galileo Orbiter Photopolarimeter Reduced Data

PDS VERSION ID = PDS3LABEL REVISION NOTE = "Larry Travis, 1999-06-30; Lyle Huber, 1999-10-15; Larry Travis, 1999-10-28; Larry Travis, 2000-07-17; Larry Travis, 2002-10-31; Lyle Huber, 2002-11-30; Lyle Huber, 2003-11-19" = DATA SET OBJECT DATA SET ID = "GO-J-PPR-3-RDR-V1.0" OBJECT = DATA SET INFORMATION = "Galileo Orbiter PPR Reduced DATA SET NAME Data Record (RDR) V1.0" DATA SET COLLECTION MEMBER FLG = "N" DATA OBJECT TYPE = TABLE START TIME = 1996-06-26T22:56:24STOP TIME = 2002-01-21T09:11:14 DATA SET RELEASE DATE = 2002-11-30 PRODUCER FULL NAME = "Larry D. Travis" = "N" DETAILED CATALOG FLAG = "Travis, L.D., T.Z. Martin, CITATION DESC G.S. Orton, J.R. Spencer, L.K. Tamppari, R.F. Beebe and L.F. Huber, GO-J-PPR-3-RDR-V1.0, NASA Planetary Data System, 2002." DATA SET DESC = "

Data Set Overview

The Photopolarimeter/Radiometer (PPR) subsystem is one of the four remote sensing instruments mounted on the Galileo Orbiter scan platform and is designed to measure the degree of linear polarization and intensity of reflected or scattered sunlight and the intensity of thermally emitted radiation from Jupiter and its major satellites. Primary science objectives and anticipated results of the PPR experiment are to: (1) determine the vertical and horizontal distribution of cloud and haze particles in the atmosphere of Jupiter; (2) determine the energy budget of Jupiter and the variation in the amount and spatial distribution of reflected solar radiation and emitted thermal radiation for Jupiter and its satellites, including the thermal structure of the atmosphere of Jupiter; and (3) measure and map the photometric, polarimetric, and thermal radiometric properties of the major satellites of Jupiter. These objectives of course contribute to the broader goals of the Galileo Mission science

disciplines of atmospheres and satellites as planned and coordinated by the Atmospheres Working Group (AWG) and the Satellite Working Group (SWG).

With the Galileo Orbiter constrained to use the low-gain antenna, the Jupiter Phase mission planning was necessarily predicated on the strategy of recording most of the observations by the remote sensing instruments during each encounter period, or Jupiter and satellite close approach, for playback during the long cruise portions of the eccentric orbits. As a consequence, the key spacecraft resources for science operations were Data Memory System (DMS) track usage, bits-to-ground as a measure of downlink telemetry capability, and propellant for spacecraft attitude reorientation, or science turns. Initial planning by the Galileo Project Science Group (PSG) thus entailed the allocation of spacecraft resources to the three science disciplines - atmospheres, magnetosphere, and satellites - with the respective working groups planning and coordinating specific observations, or Orbit Activity Plan ELements (OAPELs). The resulting plans are summarized in the Orbit Planning Guide (OPG; [GLLOPG]).

The OPG summarizes the basic science objectives for each discipline and describes the strategies that were adopted given the resources allocated to each WG. For the AWG, the strategy was to focus on integrated studies of a variety of atmospheric features and to emphasize observations that are unique in terms of instrumental capability or observing geometry opportunities. For the SWG, the objective was to obtain global coverage of the satellites at modest spatial resolution consistent with resources and to emphasize small regions of interest for high spatial resolution and full multispectral coverage. AWG and SWG objectives required coordinated observations by two or more of the four scan platform instruments as well as some observations by individual instruments.

AWG Science Objectives and Observation Strategy:

Atmospheric science objectives for the Galileo Mission were to: (1) determine the chemical composition of the atmosphere; (2) determine the structure of the atmosphere to a depth of at least 10 bars; (3) determine the nature of the cloud particles and the location and structure of the cloud layers; (4) determine the radiative energy balance in the atmosphere; (5) investigate the circulation and dynamics of the atmosphere; and (6) investigate the upper atmosphere and ionosphere. The Galileo Probe addressed these objectives at one location and time, while the Orbiter observations are essential for completing the picture by providing spatial and temporal coverage. Observations by the remote sensing instruments on the Orbiter provide

high spatial resolution with broad spectral and phase angle coverage. In general, coordinated observations by the scan platform instruments are the optimum strategy because of the broad spectral coverage thus afforded. While many of the AWG observations were accordingly coordinated, the planned sequences typically involved distinct OAPELs for the individual instruments closely spaced in time rather than actually simultaneous measurements because of practical issues of efficient DMS tape usage.

Since the number of image frames from the Solid State Imaging (SSI) system was rather restricted for the low-gain antenna mission, the AWG emphasized the observation of discrete atmospheric features utilizing joint remote sensing by the scan platform instruments. So the primary AWG observational objective was for local regions defined by spatial scales of about 10,000 km, to determine the temperature structure, distribution of minor gaseous constituents, properties of the clouds, radiative energy budget, and wind field from observations at the highest spatial resolution over a range of emission and phase angles. These local regions included the Probe Entry Site, shearing regions at the edges of jets, white ovals, brown 'barges', infrared 'hot spots', and equatorial plumes. Because of the need to obtain SSI frames spaced appropriately in time for determining cloud motions and to obtain a range of emission and phase angles, these observations were called feature tracks. Features covering a broader area are also important, but their coverage could not involve joint observations by all remote sensing instruments at their fullest capabilities. These regions included the Great Red Spot (GRS), the North and South Polar Regions, and two stable axisymmetric features: South Tropical Zone (STrZ) and North Equatorial Belt (NEB). In order to establish context, to study zonal wave structure, and to provide a modest survey for temporal variations, global observations by individual instruments were planned on a very limited basis. Finally, given the limitations of local or regional feature characterization and the relatively modest opportunities for complete longitudinal coverage in global maps, meridional scans were employed to provide sensitive studies of meridional variability of temperature, composition, or cloud properties.

PPR observations in support of the AWG strategy are characterized by the following OAPEL types:

 1) FTBAS: Basic feature track support; observes the local regions in both radiometry and photopolarimetry as part of the atmospheric feature campaign involving all the remote sensing instruments.
 2) FTPOL: Adds feature track coverage to FTBAS in photopolarimetry at other phase angles.

3) FTRAD: Repeat of feature track in FTBAS in radiometry at different

emission angle.

4) REGMAP: Characterize properties of a region larger than the standard feature track; nominally 4 times larger in both dimensions.5) GLOBAL: Global map with complete coverage over 360 degrees of longitude with variable latitude range.

6) NSSTRP: North-south stripe provides pole-to-pole coverage at selected longitudes, sometimes selected to pass through features observed in feature track or regional map observations.

SWG Science Objectives and Observation Strategy:

Satellite science objectives for the Galileo Mission were to: (1) characterize the morphology, geology, and physical state of the satellite surfaces; (2) investigate the surface mineralogy of the satellites and determine the distribution of the compositional units; (3) determine the gravitational fields, magnetic fields, and dynamical properties of the satellites; and (4) study satellite atmospheres and ionospheres, extended gas clouds arising from the satellites, and interactions with the magnetosphere. Observations to achieve the satellite science objectives have far less emphasis on coordinated measurements by the scan platform instruments than that for atmospheres, but instead are often focussed on timing of specific observations within the context of the satellite encounter geometry.

Principal PPR satellite science objectives are: (1) characterizing the nature of current lo volcanism including temporal variability; (2) the search for possible internal activity on Europa and delineation of Europa's surface thermophysical properties; (3) characterizing the surface physical and optical properties with photopolarimetric phase observations; (4) determining global surface thermophysical property variations and surface volatile stability on Ganymede and Callisto; and (5) obtaining absolute temperature distribution maps. The PPR OAPEL types employed to obtain appropriate observations to realize these objectives are:

1) DGTM (Dayside Global Thermal Map): Determine global daytime brightness temperature with highest possible spatial resolution as a function of wavelength to characterize global variations in surface compaction, its correlation with geological unit, and its possible use for evaluating surface ages, emplacement mechanisms, or compositions; investigate sub-resolution temperature variations as probes of surface roughness and local albedo distribution; and evaluate stability of volatiles on the surface.

2) TPO (Thermal Phase Observation): Observe the variation in brightness temperature of a particular point on the surface when seen from different directions to improve the determination of kinetic surface temperatures.

3) DRKMAP (Darkside Map): Determine global nighttime brightness temperatures with highest possible spatial resolution as a function of wavelength to characterize global variations in surface compaction, its correlation with geological unit, and its possible use for evaluating surface ages, emplacement mechanisms, or compositions and to look for possible sources of endogenic heat for Europa.

4) HIRESS (High Resolution Samples): Determine brightness temperature distribution for small areas near closest approach to characterize local variations in surface properties, evaluate stability of volatiles on the surface, and look for possible sources of endogenic heat for Europa.

5) PPO (Polarimetry Phase Observation): Measure polarization of reflected sunlight as a function of phase angle to infer grain sizes and refractive index of surface particles.

6) IOLITE (Io Bright-Side Monitoring): Map thermal emission as a function of wavelength with best possible spatial resolution on several orbits to characterize spatial distribution and temporal variability of large, low-temperature, high power hot spots on lo's sunlit hemisphere.

7) IOMON (Io Monitoring): Map thermal emission as a function of wavelength with best possible spatial resolution on several orbits to characterize spatial distribution and temporal variability of large, low-temperature, high power hot spots.

As indicated in the Orbit Planning Guide, the Galileo Orbiter Jupiter Phase began with the approach to Jupiter and orbit insertion (JA/J0) followed by the prime mission with a tour of eleven orbits around Jupiter. NASA approved the Galileo Europa Mission (GEM) to follow the prime mission with a tour of fourteen more orbits with a focus on Europa and concluding with two encounters of Io. The lo encounters were placed at the end of GEM because of the increased risk to the spacecraft and instruments from the intense radiation expected at that closer approach to Jupiter. Despite some effects attributable to the radiation, the overall Galileo Orbiter health remained guite good, and NASA thus approved a further extended tour, the Galileo Millennium Mission (GMM), which among a number of objectives, permitted observations from two platforms as the Cassini spacecraft made its Jupiter flyby in late 2000 on its way to Saturn. The tours were shaped by close, or targeted, encounters with Ganymede, Europa, Callisto, and lo, with one such encounter on each orbit except numbers 5 and 13, which were used as 'phasing orbits' with no planned encounter science owing to the effect of Jupiter solar conjunction on telemetry. There were in addition to the targeted encounters, non-targeted satellite encounters that permitted observations at intermediate ranges for a number of the orbits. The convention adopted for designating the tour encounter phases covering the period of several days about the

satellite encounters and Jupiter closest approach was to use the letter corresponding to the targeted satellite and the orbit number, e.g., G1, E4, C10, and I24. Based upon the allocated spacecraft resources, the specific opportunities presented by each encounter phase, and the observation strategies described above, the working groups designed a detailed plan for the mission as described in the Orbit Activity Plan [GLLOAP].

PPR observations in the detailed mission plan used the basic OAPEL types described above (as well as a few special types added later), usually in a special PPR Burst-to-Tape record format that stored the relatively low rate (216 bps) PPR data in spacecraft memory until an appropriately-sized block of data was accumulated to be written to the DMS tape. Other PPR observations were made in the so-called 'ridealong' mode with a record format that included the PPR data as part of the Low Rate Science along with data from the prime instrument for that particular OAPEL, nearly always either the Near-Infrared Mapping Spectrometer (NIMS) or SSI instruments. For both types of PPR observations, the original strategy was to use one of three principal PPR operational modes: (1) cycle mode, for which the PPR filter wheel makes a complete cycle over a period of about 28 seconds, making photopolarimetry and thermal radiometry measurements; (2) radiometry mode, for which the PPR filter wheel cycles back and forth over just the 7 radiometry positions; and (3) photopolarimetry mode, for which the PPR filter wheel makes a complete cycle, but steps through the radiometry positions without taking any data.

Midway through the G1 encounter, the PPR instrument exhibited anomalous behavior with the filter wheel becoming stuck at a single radiometry position. As a consequence, all planned PPR OAPELs for G2 were canceled and a sequence involving thermal cycling of the instrument in an attempt to recover wheel stepping was added at the end of the G2 encounter. When that recovery attempt failed, all PPR OAPELs in C3 and E4 were performed at the single radiometry band at which the wheel was stuck. Another recovery sequence at the end of the E4 sequence proved successful and all PPR observations from then until the end of the Jupiter Phase Nominal Mission were performed using an operational mode that allows stepping the wheel back and forth over a few positions, thus permitting operations without going back to the position at which the wheel had become stuck. This same strategy was followed throughout GEM and GMM, but it was necessary to have the filter wheel step through the worrisome position on several occasions in order to start a new cycle. In each case this operation was successful and the filter wheel did not become stuck. Of course, this means that most PPR OAPELs were then made at fewer wavelengths than originally planned. See the INST.CAT file for a detailed

description of the PPR operational modes and the nature of the filter wheel anomaly.

The observations in the present data set are the PPR Reduced Data Record (RDR) level data for GEM and GMM from E12 encounter through I33 encounter. The RDR data include PPR science data converted from raw science data numbers (DN) in the Reformatted Experiment Data Record (R_EDR) data set (DATA_SET_ID: GO-J-PPR-2-REDR-GEM-GMM-V1.0) to intensity for

the photometry measurements; intensity, linear polarization degree, and polarization direction for polarimetry; and radiance in dimensionless DN and corresponding brightness temperature for the radiometry. The PPR R_EDR data were organized as records in an ASCII table, one record for each minor frame buffer of raw PPR data, with each record containing three pairs of PPR science data samples. Each record of the RDR data set contains the reduced data for a single pair of science data samples along with time tag information and some of the instrument housekeeping from the R_EDR records, again presented in ASCII tabular format. Data for each observation, or OAPEL, are contained in a single data file. File labels specify the OAPEL, the time of observation, data file format, and a unique PRODUCT_NAME for the observation that is generally the same as the Galileo observation ID with -R_EDR or -RDR appended to indicate reformatted EDR or reduced data (present data set), respectively.

The observation ID is a 12-character field that begins with two characters for the orbit (e.g., E4, with the letter dropped after orbit C9), followed by one letter for the target body (J - Jupiter, C - Callisto, E - Europa, G - Ganymede, I - Io, N - calibration target, X - space or not applicable), followed by one letter for the prime instrument for the OAPEL (N - NIMS, P - PPR, S - SSI, U - UVS), followed by six characters for the observation name (usually the OAPEL type, but also proper names or abbreviations thereof), followed by a 2-digit observation series number. Thus, the observation IDs for the two PPR global maps of Jupiter in orbit G1 are G1JPGLOBAL01 and G1JPGLOBAL02, while the PPR ride-along with one of the NIMS observations of a brown barge at 42-degree phase angle in orbit E11 is 11JNBRG04203. An exception to the leading portion (prior to -RDR) of the PRODUCT_NAME being identical to the observation ID is that we retain the leading letter for the orbits after C9.

Parameters ======

The PPR presents to the Galileo Orbiter Command and Data Subsystem

(CDS), an 18-byte instrument data buffer for each 2/3-sec interval corresponding to one minor frame (or MOD91) count of the spacecraft clock (91 minor frames constitute one RIM count of the spacecraft clock). For each of the 18-byte PPR minor frame records, the first six bytes are housekeeping data that completely specify the instrument status, both commanded parameters and position within operational measurement mode cycles. The remaining twelve bytes are three sets of PPR science data sample pairs and their associated identifying parameters and parity check bit.

Because of the differences in time required for specific steps of the instrument operation, the various operational modes of the PPR result in the generation of the 18-byte minor frame records at variable rates. Those rates range from just slightly slower than that at which the CDS performs the readout of those records every 2/3 second to a rate that is about three times slower. Accordingly, the PPR design uses two internal 18-byte buffers that are alternately filled, with one buffer being active, or in the state of being filled, and the other containing the previous 18 bytes of housekeeping and science data for the sequence. At the time of each CDS readout of PPR data, it is only the non-active buffer that is presented and placed into the CDS processing stream, and whenever that buffer has been previously transferred, the PPR sets a flag in the housekeeping data of that record to indicate that it is a 'repeat' record. For PPR observations that use the Low Rate Science format to record to the DMS tape, all PPR minor frame records are recorded and ultimately returned. With the PPR Burst-to-Tape record mode, however, the CDS checks the PPR housekeeping to identify and discard the repeat records, storing only the non-redundant records for playback and downlink telemetry.

The PPR R EDR data set is organized with the PPR minor frame record as the focus, so each record of the R EDR ASCII table is a set of columns that displays all of the housekeeping and science data for that minor frame along with the spacecraft clock RIM and MOD91 counts that correspond to the time that the memory buffer containing those data was readout by the CDS. In contrast, the focus of the PPR RDR data set is on the science data unit, with a separate record generated for each of the three science data sample pairs of the minor frame record. Moreover, in order to appropriately represent the time at which a given science sample was acquired, we use the specific timing of the PPR operational modes to determine an 'adjusted' spacecraft clock RIM and MOD91 count. The ADJUSTED RIM and ADJUSTED MOD91 are the first two parameters of each RDR record and are followed in the record with the RIM and MOD91 values to provide an unambiguous identification of the R EDR record from which the RDR data came. Note that the adjusted RIM and MOD91 naturally always represent earlier times than the RIM

and MOD91 corresponding to the time of the readout of the PPR memory buffer. Following the adjusted and original spacecraft clock counts is the portion of the PPR housekeeping that describes the instrument status (i.e., not including parity information, valid command count, repeat memory buffer flag, and memory buffer ID contained in the R EDR version archive), the PPR filter wheel position, the raw science data sample pair in DN, right ascension and declination (in degrees) of the scan platform instruments boresight direction, radiometry radiance in DN, radiometry brightness temperature in Kelvins, photometry or polarimetry radiance in DN, photometry or polarimetry radiance in absolute units of watts per square cm per steradian per nm, linear polarization degree in percent, polarization direction angle in degrees (i.e., the direction of the maximum E-field vector in the scene radiance relative to the PPR reference plane defined by the instrument baseplate), and a flag indicating whether the data sample pair was corrupted by a spacecraft boom passing through the PPR FOV.

Processing

=========

The PPR makes three different types of measurements: photometry, polarimetry, and radiometry, with a range of positions on the rotating PPR filter wheel corresponding to each. Positions 0 - 17 are used for three polarimetry spectral bands, 18 - 24 for seven thermal radiometry bands, and 25 - 31 for seven photometry bands. At each of the thermal radiometry positions, a chopper mirror alternately directs the scene flux and the space-view reference flux through the filter and then from a mirror mounted on the back of the filter wheel to a pyroelectric detector. For radiometry measurements, the first of the pair of data samples is the digitized output from the detector while the second data sample is the reading from one of 10 thermistors monitoring the temperature of internal instrument elements or 2 platinum resistance thermometers and a reference resistance monitoring the temperature of the PPR radiometric calibration target (RCT). At the photometry and polarimetry positions, the scene flux is directed by a relay lens through a Wollaston prism that splits the input into two orthogonally-polarized output beams, which are then focused onto a pair of silicon photodiode detectors. Polarimetry measurements for a given spectral band are made at three filter wheel positions with three different orientations of half-wave retarders (mounted over the filter positions) in order to obtain the linear polarization degree and direction as well as intensity, whereas for photometry, the two orthogonal intensity components are simply added to get the intensity.

The data reduction of the thermal radiometry entails the correction of

the raw pyroelectric detector output for contributions to the measured flux by emission, albeit small, from internal elements such as mirrors and radiometric stops. These corrections use the element temperatures monitored by the thermistors along with calibration factors determined through ground thermal vacuum tests in which each element was in turn heated by several degrees to observe the sensitivity to that particular element. The corrected net thermal radiance is then converted to a brightness temperature in Kelvins.

Input data for the RDR data set are of course the R EDR data, with three RDR records generated for each R EDR record, corresponding to one RDR record for each of the three science data sample pairs in the R EDR record, as described above. Each RDR data set record identifies the filter wheel position for that particular science data sample pair, which in turn indicates whether that record corresponds to radiometry, photometry, or polarimetry. Thus, meaningful reduced values for the respective type of PPR measurement appear in the appropriate columns and zero-fill is used in the other columns; e.g., when the filter wheel is at position 21, there are entries for the radiometry radiance in DN and the brightness temperature, but the polarimetry/photometry intensities, linear polarization degree, and polarization directions are set to zero. Since polarimetry requires a minimum of two, and preferably three successive retarder positions, the tabulated polarization quantities are based upon the current data sample position and the previous, most recent data for the other requisite position(s).

Data

====

The PPR reduced data are formatted as ASCII tables, one record for each PPR data sample pair corresponding to a single measurement. Each record begins with the adjusted spacecraft clock RIM and MOD91 counts that correspond to the time at which the sample was acquired and these are followed by the original RIM and MOD91 that provide the time tag identifying the R_EDR record that serves as the input for these RDR records.

For PPR observations that use the Burst-to-Tape record mode, the spacecraft scan platform pointing (viz., right ascension and declination angles) information is merged with the PPR science data because the Attitude and Articulation Control System (AACS) readouts that are included in the Low Rate Science record blocks and provide scan platform pointing would not otherwise be available with adequate frequency in the playback and downlink of the Burst-to-Tape mode. So

the two columns of the RDR records for the scan platform right ascension and declination angles, are set to zero when the PPR observation uses the Low Rate Science record mode. In all record formats other than PPR Burst-to-Tape, the AACS information is delivered directly to the SPICE System, which provides general target and observing geometry and is archived in PDS. For the Burst-to-Tape record mode, the scan platform right ascension and declination are obtained from the PPR science data and then delivered to the SPICE System.

Note also that in the PPR Burst-to-Tape record mode, the second byte of the PPR housekeeping is deleted from the data stored in the CDS memory buffer in order to reduce the total data volume slightly and to optimize the sizing of the buffer. The second byte of housekeeping was chosen because the bits therein correspond to the values for three parameters: photopolarimetry gain, radiometry gain, and number of samples, and all three of these parameters are set by command and do not change during instrument operation unless reset by sending a new command. See the data label file format for a detailed description of these parameters. In the processing to generate the present reduced science data, the known values for these parameters are manually input based upon the Galileo Sequence of Events File (SEF), which indicates the timing of the PPR commands and the commanded parameter values.

Listed below by orbit are the PPR RDR data files with the data filename, observation ID (modified as described above), observation start time, and duration. Files are located in subdirectories by orbit name and then by target. Please note that because of the anomalous behavior of the PPR radiometry in encounter C20, reduction of those radiometry observations would be meaningless. Since all observations planned for C20 were in radiometry mode, none of the C20 observations represented in the R_EDR data set are included here.

G1:

Filename	Obser	vation ID	Start	Time	Duration	
GRSMNC01.	TAB (G1JPGRSM	NC01	1996-0)6-26T22:56:24	01:03:21
GRSMND01.	TAB (G1JPGRSM	ND01	1996-0	6-27T00:02:08	00:34:16
GRSEXC01.	TAB (G1JPGRSEX	C01	1996-06	6-27T00:50:41	00:31:09
GRSRAD01.	TAB (G1JPGRSRA	D01	1996-06	6-27T01:24:02	00:15:54
MEMPIS01.7	AB G	1GNMEMPI	S01	1996-06	-27T03:14:15	00:08:03
DRTM01.1	FAB G	GPDRTM	_01	1996-06	-27T03:24:46	00:29:23
AMON_01.7	ГАВ С	GIGNAMON	01	1996-06	6-27T05:02:26	00:04:54

PTAH01.TAB	G1GNPTAH01	1996-06-27T05:11:30 00:03:54
HIRESS01.TAB	G1GPHIRESS01	1996-06-27T06:27:25 00:05:27
HIRESS02.TAB	G1GPHIRESS02	1996-06-27T06:43:40 00:07:57
DRKMAP01.TAB	G1GPDRKMAP0	1 1996-06-27T07:45:13 00:38:41
STP15001.TAB	G1GPSTP15001	1996-06-27T08:32:48 00:00:25
DRKMAP02.TAB	G1GPDRKMAP0	2 1996-06-27T08:59:01 02:15:35
GRS00501.TAB	G1JNGRS00501	1996-06-27T11:20:38 00:11:34
GLOBAL1A.TAB	G1JPGLOBAL01_	PT1 1996-06-27T12:46:31 00:55:12
GLOBAL1B.TAB	G1JPGLOBAL01	PT2 1996-06-27T13:41:45 02:09:05
GLOBAL1C.TAB	G1JPGLOBAL01	PT3 1996-06-27T15:50:52 02:06:55
GLOBAL1D.TAB	G1JPGLOBAL01	_PT4 1996-06-27T17:57:48 02:06:34
GLOBAL1E.TAB	G1JPGLOBAL01_	PT5 1996-06-27T20:04:24 01:38:42
GR043P01.TAB	G1JPGR043P01	1996-06-27T21:48:30 00:10:42
STP02503.TAB	G1EPSTP02503	1996-06-27T22:22:12 00:00:26
NHILAT01.TAB	G1ENNHILAT01	1996-06-28T00:00:56 00:30:06
STP04404.TAB	G1EPSTP04404	1996-06-28T03:03:14 00:00:26
STP05505.TAB	G1EPSTP05505	1996-06-28T05:27:14 00:00:26
STP06006.TAB	G1EPSTP06006	1996-06-28T06:30:32 00:00:26
STP06507.TAB	G1EPSTP06507	1996-06-28T07:30:32 00:00:26
GRS09102.TAB	G1JNGRS09102	1996-06-28T08:47:44 00:11:55
STP07008.TAB	G1EPSTP07008	1996-06-28T09:07:24 00:00:26
STP07509.TAB	G1EPSTP07509	1996-06-28T10:15:38 00:00:26
THRMAL02.TAB	G1INTHRMAL02	1996-06-28T11:23:26 00:01:36
VOLCAN05.TAB	G1INVOLCAN05	1996-06-28T11:28:30 00:00:08
STP08010.TAB	G1EPSTP08010	1996-06-28T12:02:53 00:00:26
RCTCAL01.TAB	G1NPRCTCAL01	1996-06-28T13:16:24 00:01:25
THRMAL03.TAB	G1INTHRMAL03	1996-06-28T13:54:06 00:03:24
STP08511.TAB	G1EPSTP08511	1996-06-28T14:02:50 00:00:26
IODISK01.TAB	G1IPIODISK01	1996-06-28T18:21:58 00:12:16
GR123P01.TAB	G1JPGR123P01	1996-06-28T18:36:12 00:13:30
GLOBAL02.TAB	G1JPGLOBAL02	1996-06-28T19:08:33 02:49:57
PLLOKI01.TAB	G1ISPLLOKI01	1996-06-29T01:06:31 00:00:27
PLATEN01.TAB	G1ISPLATEN01	1996-06-29T02:51:41 00:00:26
IOECLP01.TAB	G1IPIOECLP01	1996-06-29T03:37:57 00:04:40
IOECLI02.TAB	G1ISIOECLI02	1996-06-29T03:46:47 00:00:38
PLSHTX01.TAB	G1XBPLSHTX01	1996-06-30T02:00:52 00:02:01

C3:

Filename	Observation II	D Start	Time	Duration	
RCTCAL01.T	AB C3NPRC	TCAL01	1996-11	-03T14:20:30	00:01:16
DRTM01.T.	AB C3CPDR	TM01	1996-11	-04T11:02:28	00:46:42
ASGRAD01.T	AB C3CNAS	GARD01	1996-1	1-04T12:00:28	00:29:21
DRKMAP01.7	AB C3CPDF	RKMAP01	1996-1	1-04T12:34:29	00:12:03
CRATER01.T	AB C3CNCR	ATER01	1996-11	-04T13:21:31	00:03:37
CSPOTS01.T	AB C3CNCS	POTS01	1996-11	-04T13:52:15	00:06:01

STP12003.TAB	C3CPSTP12003	1996-11-04T14:20:08 00:00:20	
DRKMAP02.TAB	C3CPDRKMAP02	1996-11-04T14:26:00 01:34:2	24
FT2D01.TAB	C3JPFT2D_01	1996-11-05T08:02:14 00:09:47	
FT2BAS01.TAB	C3JPFT2BAS01	1996-11-05T08:23:28 00:25:28	
NSSTRP01.TAB	C3JPNSSTRP01	1996-11-05T09:57:04 00:25:08	3
FT1BAS01.TAB	C3JPFT1BAS01	1996-11-05T20:48:40 00:51:16	
FT1D01.TAB	C3JPFT1D_01	1996-11-05T21:59:26 00:17:57	
FT1RAD01.TAB	C3JPFT1RAD01	1996-11-05T23:02:25 00:17:17	
IOMON_01.TAB	C3IPIOMON_01	1996-11-06T04:16:01 00:25:27	
IOLITE01.TAB	C3IPIOLITE01 19	996-11-06T10:43:46 00:58:27	
HRSPEC01.TAB	C3INHRSPEC01	1996-11-06T11:52:35 00:07:23	3
STP03004.TAB	C3EPSTP03004	1996-11-06T15:52:14 00:00:20	
DGTM01.TAB	C3EPDGTM_01	1996-11-06T17:33:30 00:38:12	2
TPO01001.TAB	C3EPTPO01001	1996-11-06T18:13:48 00:12:04	
TPO07803.TAB	C3EPTPO07803	1996-11-06T20:20:02 00:11:05	
DRKMAP01.TAB	C3EPDRKMAP01	1996-11-06T20:36:22 00:11:0)5
STP09101.TAB	C3EPSTP09101	1996-11-06T21:10:13 00:00:21	
DRKMAP02.TAB	C3EPDRKMAP02	1996-11-06T21:12:46 00:26:0)6
STP07002.TAB	C3IPSTP07002	1996-11-06T22:23:32 00:00:20	
IOMON_02.TAB	C3IPIOMON_02	1996-11-06T23:22:11 00:18:36	
STP08003.TAB	C3IPSTP08003	1996-11-07T00:49:08 00:00:20	
STP11003.TAB	C3EPSTP11003	1996-11-07T01:24:32 00:00:20	
STP06004.TAB	C3GPSTP06004	1996-11-07T05:17:04 00:00:20	

E4:

Filename Ob	servation ID S	tart Time	Duration	
FT1BAS01.TAB	E4JPFT1BAS01	1996-12-1	18T01:59:40	00:26:06
FT1D01.TAB	E4JPFT1D01	1996-12-1	8T02:29:04	00:09:46
FT1RAD01.TAB	E4JPFT1RAD01	1996-12-	18T04:07:04	00:45:42
FTP01601.TAB	E4JPFTP01601	1996-12-1	8T12:44:45	00:29:23
IOMON_01.TAB	E4IPIOMON_01	1996-12-	18T14:32:29	00:10:46
GLOBAL01.TAB	E4EPGLOBAL01	1996-12	-18T20:17:20	00:15:00
IOLITE01.TAB	E4IPIOLITE01	1996-12-18T	22:06:56 00):22:11
DGTMDM01.TAB	E4EPDGTMDM0	1 1996-	12-19T01:58:	28 01:03:41
SUCOMP02.TAB	E4ENSUCOMP0	2 1996-´	12-19T05:20:2	25 00:09:18
SUCOMP03.TAB	E4ENSUCOMP0	3 1996- ⁻	12-19T06:25:4	42 00:12:47
IOMON_02.TAB	E4IPIOMON_02	1996-12-	19T08:37:52	00:09:07
DRKMAP02.TAB	E4EPDRKMAP02	1996-1	2-19T09:43:3	5 01:05:00
FTP09501.TAB	E4JPFTP09501	1996-12-1	9T11:10:23	00:07:30
IOECLP02.TAB	E4IPIOECLP02	1996-12-1	9T15:36:28	00:10:06
RCTCAL01.TAB	E4NPRCTCAL01	1996-12	2-20T00:45:12	00:01:18

E6:

Filename Observation ID Start Time Duration

RCTCAL01.TAB	E6NPRCTCAL01	1997-02-19T13:33:53 00:01:25
NSSTRP01.TAB	E6JPNSSTRP01	1997-02-19T18:46:35 00:51:35
CHEMIS02.TAB	E6INCHEMIS02	1997-02-20T04:02:42 00:03:31
NSSTRP02.TAB	E6JPNSSTRP02	1997-02-20T06:36:23 00:32:19
FT3EM101.TAB	E6JPFT3EM101	1997-02-20T10:27:56 00:32:20
IOLITE01.TAB	E6IPIOLITE01 19	97-02-20T11:26:35 00:29:38
TERINC01.TAB	E6ENTERINC01	1997-02-20T12:04:05 00:31:12
DGTM01.TAB	E6EPDGTM01	1997-02-20T14:17:27 00:35:35
SUCOMP01.TAB	E6ENSUCOMP01	1997-02-20T16:13:44 00:08:04
SUCOMP02.TAB	E6ENSUCOMP02	1997-02-20T16:31:56 00:08:04
PPO06001.TAB	E6EPPPO06001	1997-02-20T16:49:20 00:05:16
PPO10602.TAB	E6EPPPO10602	1997-02-20T17:00:40 00:02:20
HIRESS01.TAB	E6EPHIRESS01	1997-02-20T17:06:18 00:16:12
DRKMAP01.TAB	E6EPDRKMAP01	1997-02-20T19:25:51 00:45:43
FT1EM101.TAB	E6JPFT1EM101	1997-02-20T21:04:06 00:42:16
FT1EM201.TAB	E6JPFT1EM201	1997-02-20T22:31:53 01:04:00
CHEMIS06.TAB	E6INCHEMIS06	1997-02-21T04:02:32 00:02:43
FT2EM201.TAB	E6JPFT2EM201	1997-02-21T07:12:37 00:36:09
FT2EM101.TAB	E6JPFT2EM101	1997-02-21T08:59:47 00:42:07
THRMNS01.TAB	E6JNTHRMNS01	1997-02-21T11:07:12 00:29:48
NSSTRP03.TAB	E6JPNSSTRP03	1997-02-21T14:51:39 00:25:08
GLOBAL01.TAB	E6GPGLOBAL01	1997-02-21T23:14:11 00:08:48
GLOBAL01.TAB	E6CNGLOBAL01	1997-02-22T22:08:16 00:08:14
DRKMAP01.TAB	E6CPDRKMAP01	1997-02-22T22:22:26 00:29:42

G7:

Filename Ob	servation ID Sta	art Time	Duration	
GLOBAL01.TAB	G7CSGLOBAL01	1997-0 [,]	4-02T16:42:56	00:00:52
NSSTRP02.TAB	G7JPNSSTRP02	1997-04	4-03T10:46:44	00:19:52
CHEMIS03.TAB	G7INCHEMIS03	1997-04	-03T18:00:29	00:03:15
HRSPEC01.TAB	G7INHRSPEC01	1997-04	4-03T21:03:29	00:02:57
GLOBAL01.TAB	G7IPGLOBAL01	1997-04	-03T21:10:34	00:19:30
FTSEM201.TAB	G7JPFTSEM201	1997-04	I-03T23:27:05	00:17:37
TOPMAP02.TAB	G7ISTOPMAP02	1997-0-	4-04T01:46:38	00:00:06
DGTM_01.TAB	G7EPDGTM_01	1997-0	4-04T02:35:09	01:03:41
LOWFOT01.TAB	G7ESLOWFOT01	1997-0	04-04T04:15:16	6 00:00:22
VLOFOT01.TAB	G7ESVLOFOT01	1997-04	4-04T04:32:28	00:00:21
CHEMIS05.TAB	G7INCHEMIS05	1997-04	-04T04:49:38	00:00:57
IOMON_01.TAB	G7IPIOMON_01	1997-04	-04T04:57:43	00:01:17
TOPMAP03.TAB	G7ISTOPMAP03	1997-0 [,]	4-04T05:04:41	00:00:05
SMONHI01.TAB	G7ISSMONHI01	1997-04	-04T05:04:48	00:00:06
TYRMAC01.TAB	G7ESTYRMAC01	1997-(04-04T05:09:50	00:00:06
TYRMAC02.TAB	G7ESTYRMAC02	1997-0	04-04T05:14:54	00:00:01
FEX02003.TAB	G7JNFEX00203	1997-04-0	04T05:20:58	00:01:40
TPO_3001.TAB	G7EPTPO_3001	1997-04	-04T05:30:15	00:16:59

APEXCR01.TAB	G7ESAPEXCR01	1997-04-04T06:14:01	00:00:01
APEXCR02.TAB	G7ESAPEXCR02	1997-04-04T06:18:21	00:00:02
APEXCR03.TAB	G7ESAPEXCR03	1997-04-04T06:22:43	00:00:02
APEXCR04.TAB	G7ESAPEXCR04	1997-04-04T06:27:04	00:00:02
TPO 9002.TAB	G7EPTPO 9002	1997-04-04T06:33:46	00:18:36
DGTM 02.TAB	G7EPDGTM 02	1997-04-04T06:57:02	00:40:09
DRKMAP01.TAB	G7EPDRKMAP01	1997-04-04T07:42:32	01:34:41
RCTCAL01.TAB	G7NPRCTCAL01	1997-04-04T11:03:28	00:01:04
HOTMAP01.TAB	G7JPHOTMAP01	1997-04-04T11:36:06	01:01:24
REGMAP01.TAB	G7JPREGMAP01	1997-04-04T12:59:00	00:46:42
GRSEM201.TAB	G7JPGRSEM201	1997-04-04T18:37:44	00:45:04
GRSEM101.TAB	G7JPGRSEM101	1997-04-04T19:39:24	00:26:07
FTNEM101.TAB	G7JPFTNEM101	1997-04-04T20:26:56	00:35:46
FEAP6602.TAB	G7JNFEAP6602	1997-04-04T21:15:28	00:05:00
PFTB6602.TAB	G7JNPFTB6602	1997-04-04T21:25:30 (00:00:03
FTSEM101.TAB	G7JPFTSEM101	1997-04-04T21:42:45	00:16:15
FEA53M01.TAB	G7JNFEA53M01	1997-04-04T22:10:50	00:10:18
FTNEM201.TAB	G7JPFTNEM201	1997-04-04T22:26:14	00:24:49
DRTM_01.TAB	G7GPDRTM_01	1997-04-05T01:04:59	00:44:24
EWSTRP01.TAB	G7JPEWSTRP01	1997-04-05T02:19:48	00:15:20
DRKMAP01.TAB	G7GPDRKMAP01	1997-04-05T03:41:43	00:45:08
HILAT_01.TAB	G7GNHILAT_01	1997-04-05T04:33:16 0	0:23:03
THRMAL06.TAB	G7INTHRMAL06	1997-04-05T05:09:36	00:00:03
PALIMP01.TAB	G7GSPALIMP01	1997-04-05T05:40:02	00:00:05
ENKIDU01.TAB	G7GPENKIDU01	1997-04-05T06:00:14	00:06:50
CATENA01.TAB	G7GSCATENA01	1997-04-05T06:12:22	00:00:13
BRITRL01.TAB	G7GNBRITRL01	1997-04-05T06:20:26 (00:04:44
NICHOL01.TAB	G7GSNICHOL01	1997-04-05T06:31:36	00:00:22
ACHELS01.TAB	G7GSACHELS01	1997-04-05T06:33:37	00:00:14
NUNSUL01.TAB	G7GSNUNSUL01	1997-04-05T06:35:38	00:00:14
NEITH_01.TAB	G7GSNEITH_01	1997-04-05T06:37:40 (00:00:18
KITTU_01.TAB	G7GSKITTU_01	1997-04-05T06:39:46 0	0:00:52
KITTU_02.TAB	G7GSKITTU_02	1997-04-05T06:40:41 0	0:00:43
KITTUN01.TAB	G7GNKITTU_01	1997-04-05T06:42:42 (0:11:38
HIRESS01.TAB	G7GPHIRESS01	1997-04-05T07:11:00	00:14:09
DRKMAP02.TAB	G7GPDRKMAP02	1997-04-05T08:45:02	01:07:19
STP12001.TAB	G7GPSTP12001	1997-04-05T10:02:52	00:08:10
STP12501.TAB	G7IPSTP12501	1997-04-05T11:05:34 0	0:00:17
STP12001.TAB	G7EPSTP12001	1997-04-05T11:17:42 (00:00:17
STP13501.TAB	G7CPSTP13501	1997-04-05T11:58:09 (00:00:17
FTP13003.TAB	G7JPFTP13003	1997-04-05T16:44:18 0	0:18:10
FEA13002.TAB	G7JNFEA13002	1997-04-05T17:05:32 0	0:01:39
STP14501.TAB	G7IPSTP14501	1997-04-05T17:24:45 0	0:00:17
EWSTRP02.TAB	G7JPEWSTRP02	1997-04-05T22:24:01	00:20:00
STP15501.TAB	G7IPSTP15501	1997-04-06T06:20:16 0	0:00:17
STP15501.TAB	G7CPSTP15501	1997-04-06T10:05:44 (00:00:17

G8:

Filename Ob	servation ID Sta	art Time Duration
POLMAP01.TAB	G8CPPOLMAP01	1997-05-06T09:38:10 01:10:39
SPOLE_01.TAB	G8CNSPOLE_01	1997-05-06T11:18:24 00:30:04
STP04101.TAB	G8CPSTP04101	1997-05-06T11:54:40 00:10:43
BURI_01.TAB	G8CNBURI_01	1997-05-06T12:15:53 00:10:45
ADLIND01.TAB	G8CNADLIND01	1997-05-06T12:31:03 00:18:36
STP06101.TAB	G8CPSTP06101	1997-05-06T13:00:20 00:03:28
POLMAP02.TAB	G8CPPOLMAP02	1997-05-06T13:39:49 00:28:35
POLMAP03.TAB	G8CPPOLMAP03	1997-05-06T16:15:31 00:09:23
IOMON_01.TAB	G8IPIOMON_01	1997-05-07T10:51:47 00:06:42
VOLCAN04.TAB	G8INVOLCAN04	1997-05-07T12:09:38 00:01:41
OSIRIS01.TAB	G8GNOSIRIS01	1997-05-07T13:09:17 00:11:14
POLMAP01.TAB	G8GPPOLMAP01	1997-05-07T13:34:34 00:35:49
URUK_01.TAB	G8GNURUK_01	1997-05-07T14:36:15 00:19:00
TRANSI01.TAB	G8GNTRANSI01	1997-05-07T14:57:29 00:07:30
LIDARK01.TAB	G8GNLIDARK01	1997-05-07T15:07:35 00:05:50
MELKAR01.TAB	G8GNMELKAR01	1997-05-07T15:26:48 00:08:27
DARTRL01.TAB	G8GNDARTRL01	1997-05-07T15:40:56 00:06:40
STP15601.TAB	G8GPSTP15601	1997-05-07T16:12:18 00:00:21
STP14402.TAB	G8GPSTP14402	1997-05-07T16:19:23 00:00:21
STP12704.TAB	G8GPSTP12704	1997-05-07T16:58:49 00:00:26
POLMAP02.TAB	G8GPPOLMAP02	1997-05-07T17:00:51 01:09:51
STP03901.TAB	G8EPSTP03901	1997-05-07T18:33:52 00:00:25
FEA04101.TAB	G8JNFEA04101	1997-05-07T21:28:47 00:01:38
FT2BAS01.TAB	G8JPFT2BAS01	1997-05-07T21:35:13 00:42:05
FT2RAD01.TAB	G8JPFT2RAD01	1997-05-07T23:19:59 00:12:04
NSSTRP01.TAB	G8JPNSSTRP01	1997-05-08T05:03:46 01:01:47
STP02501.TAB	G8EPSTP02501	1997-05-08T09:08:29 00:00:24
FEAP1001.TAB	G8JNFEAP1001	1997-05-08T09:25:39 00:05:00
FTP01001.TAB	G8JPFTP01001	1997-05-08T09:46:53 00:15:38
RCTCAL01.TAB	G8NPRCTCAL01	1997-05-08T10:35:09 00:01:20
PFTB1003.TAB	G8JNPFTB1003	1997-05-08T11:14:51 00:07:04
FEAP1002.TAB	G8JNFEAP1002	1997-05-08T11:26:56 00:05:02
STP02001.TAB	G8IPSTP02001	1997-05-08T12:18:33 00:00:26
STP04101.TAB	G8EPSTP04101	1997-05-08T12:29:41 00:00:26
STP05001.TAB	G8IPSTP05001	1997-05-08T15:25:37 00:00:26
HOT05801.TAB	G8JPHOT05801	1997-05-08T15:32:42 00:59:06
NSSTRP02.TAB	G8JPNSSTRP02	1997-05-08T16:43:27 00:32:40
GRS05901.TAB	G8JPGRS05901	1997-05-08T17:24:55 01:00:28
STP07001.TAB	G8EPSTP07001	1997-05-08T18:39:44 00:00:25
REG06201.TAB	G8JPREG06201	1997-05-08T18:44:48 01:02:14
STP07001.TAB	G8IPSTP07001	1997-05-08T19:53:34 00:00:25

FEAP7101.TAB	G8JNFEAP7101	1997-05-08T20:01:39	00:04:59
PFTB7101.TAB	G8JNPFTB7101	1997-05-08T20:12:46	00:06:59
FT1BAS01.TAB	G8JPFT1BAS01	1997-05-08T20:20:51	00:31:47
PFTB7102.TAB	G8JNPFTB7102	1997-05-08T21:04:20	00:06:59
FEAP7102.TAB	G8JNFEAP7102	1997-05-08T21:17:29	00:04:58
STP12001.TAB	G8CPSTP12001	1997-05-08T21:34:39	00:00:25
STP09901.TAB	G8IPSTP09901	1997-05-09T01:24:11	00:00:25
STP10001.TAB	G8EPSTP10001	1997-05-09T02:36:59	00:00:25
REG09301.TAB	G8JPREG09301	1997-05-09T03:13:43	00:17:27
GRS09801.TAB	G8JPGRS09801	1997-05-09T03:39:41	00:22:22
HOT09601.TAB	G8JPHOT09601	1997-05-09T05:10:41	00:37:36
FEA10401.TAB	G8JNFEA10401	1997-05-09T06:38:39	00:01:39
FTP10402.TAB	G8JPFTP10402	1997-05-09T06:58:53	00:14:44
FEA10402.TAB	G8JNFEA10402	1997-05-09T07:19:05	00:00:48
REG10401.TAB	G8JPREG10401	1997-05-09T08:00:51	00:35:22
STP13001.TAB	G8IPSTP13001	1997-05-09T11:22:47	00:00:25
STP13601.TAB	G8CPSTP13601	1997-05-09T11:27:50	00:00:25
STP14001.TAB	G8EPSTP14001	1997-05-09T18:45:39	00:00:25
STP14001.TAB	G8IPSTP14001	1997-05-10T20:12:25	00:00:26

C9:

Filename Ob	servation ID Sta	rt Time Duration	
REGMAP01.TAB	C9JPREGMAP01	1997-06-25T01:53:13	04:10:51
REGMAP02.TAB	C9JPREGMAP02	1997-06-25T09:53:28	01:08:58
POLMAP01.TAB	C9CPPOLMAP01	1997-06-25T11:42:41	00:53:44
ANARR_01.TAB	C9CNANARR_01	1997-06-25T13:59:09	00:12:09
CRATER01.TAB	C9CSCRATER01	1997-06-25T14:23:28	00:00:49
SKULD_01.TAB	C9CNSKULD_01	1997-06-25T14:29:31	00:10:00
NOLAT_01.TAB	C9CNNOLAT_01	1997-06-25T14:57:45	00:10:44
VALHAL01.TAB	C9CSVALHAL01	1997-06-25T15:13:01	00:01:58
VALSPC01.TAB	C9CNVALSPC01	1997-06-25T15:19:03	00:06:40
POLMAP02.TAB	C9CPPOLMAP02	1997-06-25T16:07:35	01:02:14
POLMAP01.TAB	C9GPPOLMAP01	1997-06-26T13:57:59	01:36:44
CLIPSE01.TAB	C9ENCLIPSE01	1997-06-26T16:00:20 0	0:04:44
STP00403.TAB	C9GPSTP00403	1997-06-26T16:23:35 (00:08:29
BRILED01.TAB	C9GNBRILED01	1997-06-26T17:27:17	00:11:18
SULCUS01.TAB	C9GSSULCUS01	1997-06-26T17:55:37	00:00:32
STP04604.TAB	C9GPSTP04604	1997-06-26T18:03:41 (00:19:14
CLIPSE03.TAB	C9ENCLIPSE03	1997-06-26T18:50:12 0	0:04:42
POLMAP02.TAB	C9GPPOLMAP02	1997-06-26T19:10:25	01:02:41
GRS05101.TAB	C9JNGRS05101	1997-06-26T20:24:14	00:03:18
GRS05102.TAB	C9JNGRS05102	1997-06-26T20:44:23	00:03:22
FT1BAS01.TAB	C9JPFT1BAS01	1997-06-26T20:53:33	00:29:05
GRS05103.TAB	C9JNGRS05103	1997-06-26T21:50:09	00:03:22
GLOBAL02.TAB	C9GNGLOBAL02	1997-06-26T21:58:12	00:20:10

FT1RAD01.TAB	C9JPFT1RAD01	1997-06-26T22:26:34 00:17:00
FT2BAS01.TAB	C9JPFT2BAS01	1997-06-27T03:03:37 00:31:20
GLOBAL01.TAB	C9ESGLOBAL01	1997-06-27T03:50:09 00:00:54
FT2RAD01.TAB	C9JPFT2RAD01	1997-06-27T04:32:35 00:59:06
PHOTOM01.TAB	C9ISPHOTOM01	1997-06-27T06:01:35 00:00:07
GRS01102.TAB	C9JNGRS01102	1997-06-27T06:38:59 00:03:20
GRS01103.TAB	C9JNGRS01103	1997-06-27T08:24:09 00:03:19
CHEMIS01.TAB	C9INCHEMIS01	1997-06-27T10:36:36 00:02:01
GRS03901.TAB	C9JNGRS03901	1997-06-27T17:08:55 00:03:19
STP06501.TAB	C9IPSTP06501	1997-06-27T17:17:00 00:10:43
NSSTRP02.TAB	C9JPNSSTRP02	1997-06-27T20:59:26 00:33:07
VOLCAN01.TAB	C9INVOLCAN01	1997-06-27T21:36:51 00:01:33
CHEMIS03.TAB	C9INCHEMIS03	1997-06-27T22:31:23 00:03:24
FEA05701.TAB	C9JNFEA05701	1997-06-27T22:46:34 00:08:26
FEA05702.TAB	C9JNFEA05702	1997-06-28T00:32:47 00:03:19
FTP25701.TAB	C9JPFTP25701	1997-06-28T00:40:52 00:27:18
FEA05703.TAB	C9JNFEA05703	1997-06-28T01:13:14 00:03:20
FEA05704.TAB	C9JNFEA05704	1997-06-28T02:01:46 00:03:19
STP08101.TAB	C9IPSTP08101	1997-06-28T02:10:51 00:16:06
FTP19502.TAB	C9JPFTP19502	1997-06-28T15:43:47 00:15:39
NSSTRP03.TAB	C9JPNSSTRP03	1997-06-28T17:51:12 00:39:23
ECLIPS02.TAB	C9ISECLIPS02	1997-06-28T18:36:44 00:00:27
CHEMIS06.TAB	C9INCHEMIS06	1997-06-28T18:42:46 00:02:34
STP14505.TAB	C9GPSTP14505	1997-06-28T19:37:22 00:00:25
FEA10201.TAB	C9JNFEA10201	1997-06-28T21:00:16 00:03:20
FTP10202.TAB	C9JPFTP10202	1997-06-28T21:08:22 00:16:33
RCTCAL01.TAB	C9NPRCTCAL01	1997-07-14T11:36:59 00:02:47
PCTCAL01.TAB	C9NPPCTCAL01	1997-07-14T11:43:20 00:10:57

C10:

Filename Ob	servation ID	Start	Time	Duration	
DRTM_01.TAB	C10CPDRTM_	01	1997-09	-16T19:39:14	00:48:20
DRKMAP01.TAB	C10CPDRKMA	P01	1997-0	9-16T20:46:5	9 01:23:53
RCTCAL01.TAB	C10NPRCTCAL	.01	1997-09	-16T22:19:00	00:00:42
ASGARDS1.TAB	C10CSASGAR	D01	1997-0	9-16T23:56:0	5 00:01:39
ASGARDN1.TAB	C10CNASGAF	D01	1997-0)9-17T00:00:0	00:08:57
PALIMP01.TAB	C10CNPALIMPO)1	1997-09-	17T00:29:24	00:05:00
SMTHPLS1.TAB	C10CSSMTHP	L01	1997-09	9-17T00:35:31	00:00:04
SMTHPLN1.TAB	C10CNSMTHP	L01	1997-0	9-17T00:37:30	00:11:01
VALHAL01.TAB	C10CNVALHAL	01	1997-09-	-17T00:53:42	00:08:58
CATENA01.TAB	C10CNCATEN/	401	1997-09	9-17T01:29:05	5 00:22:59
DRTM_02.TAB	C10CPDRTM_	02	1997-09	-17T02:00:25	00:34:17
DRKMAP02.TAB	C10CPDRKMA	P02	1997-0	9-17T02:37:5	0 01:11:32
CHEMIS01.TAB	C10INCHEMISC)1	1997-09-	18T07:50:06	00:02:49
NPOLEM06.TAB	C10JNNPOLE	Л06	1997-09	9-18T08:25:29	9 00:13:33

NSSTRP01.TAB	C10JPNSSTRP01	1997-09-18T08:43:41 00:27:49
SPOLEM08.TAB	C10JNSPOLEM08	1997-09-18T09:32:13 00:11:26
NPOLEM01.TAB	C10JNNPOLEM01	1997-09-18T09:48:24 00:13:32
SPOLEM01.TAB	C10JNSPOLEM01	1997-09-18T10:27:50 00:13:38
NPOLEM02.TAB	C10JNNPOLEM02	1997-09-18T11:03:10 00:13:41
SPOLEM02.TAB	C10JNSPOLEM02	1997-09-18T11:42:36 00:13:41
FEA04101.TAB	C10JNFEA04101	1997-09-18T12:07:52 00:03:36
NPOLEM03.TAB	C10JNNPOLEM03	1997-09-18T12:18:02 00:11:32
FNP04101.TAB	C10JNFNP04101	1997-09-18T13:48:18 00:13:17
SPAURD01.TAB	C10JNSPAURD01	1997-09-18T14:03:08 00:24:11
SPOLEM04.TAB	C10JNSPOLEM04	1997-09-18T14:33:28 00:13:37
FNP04102.TAB	C10JNFNP04102	1997-09-18T14:50:39 00:11:35
SPOLEM05.TAB	C10JNSPOLEM05	1997-09-18T15:28:08 00:13:33
NPOLEM04.TAB	C10JNNPOLEM04	1997-09-18T16:02:26 00:13:38
SPOLEM06.TAB	C10JNSPOLEM06	1997-09-18T16:42:53 00:13:37
NPOLEM05.TAB	C10JNNPOLEM05	1997-09-18T17:18:20 00:13:34
SPOLEM07.TAB	C10JNSPOLEM07	1997-09-18T17:57:42 00:13:38
SPAURD02.TAB	C10JNSPAURD02	1997-09-18T18:47:15 00:23:03
IOMON_02.TAB	C10IPIOMON_02	1997-09-18T19:19:40 00:19:09
NOISE_01.TAB	C10NPNOISE_01	1997-09-18T20:51:40 00:05:02
REGMAP01.TAB	C10JPREGMAP01	1997-09-18T21:25:02 01:00:44
FEA02101.TAB	C10JNFEA02101	1997-09-18T23:23:21 00:03:33
FT2BAS01.TAB	C10JPFT2BAS01	1997-09-18T23:28:24 00:14:26
FEASUB01.TAB	C10JNFEASUB01	1997-09-19T00:24:01 00:11:59
FT1BAS01.TAB	C10JPFT1BAS01	1997-09-19T01:06:29 01:10:09
FEA02102.TAB	C10JNFEA02102	1997-09-19T02:22:19 00:03:33
REGMAP02.TAB	C10JPREGMAP02	1997-09-19T02:30:24 01:33:38
IOMON_01.TAB	C10IPIOMON_01	1997-09-19T04:05:26 00:35:47
HRSPEC01.TAB	C10INHRSPEC01	1997-09-19T04:42:48 00:10:19
NSPEC_01.TAB	C10INNSPEC_01	1997-09-19T04:56:58 00:05:43
FEA07401.TAB	C10JNFEA07401	1997-09-19T10:08:26 00:03:40
CHEMIS05.TAB	C10INCHEMIS05	1997-09-19T10:24:37 00:02:28
THRCYL01.TAB	C10JNTHRCYL01	1997-09-19T10:40:48 00:19:59
FEA07402.TAB	C10JNFEA07402	1997-09-19T11:14:06 00:02:08
THRCYL02.TAB	C10JNTHRCYL02	1997-09-19T11:22:12 00:20:02
FEA07403.TAB	C10JNFEA07403	1997-09-19T11:52:32 00:03:48
THRCYL03.TAB	C10JNTHRCYL03	1997-09-19T12:02:38 00:21:44
THRCYL04.TAB	C10JNTHRCYL04	1997-09-19T13:00:20 00:22:31
IOMON_03.TAB	C10IPIOMON_03	1997-09-19T15:33:00 00:18:46
REGMAP04.TAB	C10JPREGMAP04	1997-09-19T16:24:34 01:29:41
REGMAP05.TAB	C10JPREGMAP05	1997-09-19T19:03:19 01:31:35
FEA09901.TAB	C10JNFEA09901	1997-09-19T20:57:34 00:03:38
FEA09902.TAB	C10JNFEA09902	1997-09-19T21:38:01 00:03:38
CHEMIS07.TAB	C10INCHEMIS07	1997-09-19T21:57:10 00:01:29
FEA09903.TAB	C10JNFEA09903	1997-09-19T22:10:22 00:03:40
FEA53M01.TAB	C10JNFEA53M01	1997-09-19T22:54:51 00:25:56

SPAURN01.TAB	C10JNSPAURN01	1997-09-20T04:14:22	00:29:09
REGMAP03.TAB	C10JPREGMAP03	1997-09-20T06:00:32	2 01:31:50
FEA11401.TAB	C10JNFEA11401	1997-09-20T07:37:36	00:03:45
FEA11402.TAB	C10JNFEA11402	1997-09-20T08:07:53	00:03:28

E11:

Filename Ob	servation ID St	art Time Duration	
RCTCAL01.TAB	E11NPRCTCAL01	1997-11-04T23:47:01	00:01:25
DGTM01.TAB	E11CPDGTM_01	1997-11-05T06:39:28	00:07:10
BRG53M02.TAB	E11JNBRG53M02	1997-11-05T17:20:53	00:19:59
CYLMOS06.TAB	E11JNCYLMOS06	6 1997-11-06T02:47:06	00:10:02
M17HR_01.TAB	E11ENM17HR_01	1997-11-06T03:00:12	00:19:09
M15HR_01.TAB	E11ENM15HR_01	1997-11-06T05:24:50	00:20:58
GLOBAL10.TAB	E11JPGLOBAL10	1997-11-06T10:45:43	02:52:51
BRG04203.TAB	E11JNBRG04203	1997-11-06T14:31:51	00:06:41
GLOBAL21.TAB	E11JPGLOBAL21	1997-11-06T14:39:18	00:43:00
BRG04204.TAB	E11JNBRG04204	1997-11-06T15:26:27	00:06:41
GLOBAL22.TAB	E11JPGLOBAL22	1997-11-06T15:34:14	01:10:52
HOTSPT01.TAB	E11EPHOTSPT01	1997-11-06T17:50:24	00:46:38
DRKLIT01.TAB	E11ENDRKLIT01	1997-11-06T18:49:42	00:12:00
CYCLOD01.TAB	E11ENCYCLOD02	I 1997-11-06T19:27:06	00:11:59
HOTSPT02.TAB	E11EPHOTSPT02	1997-11-06T21:36:31	01:04:25
THRMNS01.TAB	E11JNTHRMNS0	1 1997-11-07T01:06:50	00:46:08
BRGFUL01.TAB	E11JNBRGFUL01	1997-11-07T02:48:57	00:20:01
BRG02003.TAB	E11JNBRG02003	1997-11-07T03:36:28	00:04:52
GLOBAL31.TAB	E11JPGLOBAL31	1997-11-07T05:57:04	00:32:52
GLOBAL32.TAB	E11JPGLOBAL32	1997-11-07T06:40:12	00:51:20
CHEMIS01.TAB	E11INCHEMIS01	1997-11-07T07:46:12	00:02:32
GLOBAL40.TAB	E11JPGLOBAL40	1997-11-07T07:51:57	01:36:33
CHEMIS02.TAB	E11INCHEMIS02	1997-11-07T16:12:47	00:02:51
IODISK01.TAB	E11IPIODISK01	1997-11-07T19:00:59 00):04:41
CHEMIS03.TAB	E11INCHEMIS03	1997-11-07T19:47:08	00:02:00
HRSPEC01.TAB	E11INHRSPEC01	1997-11-07T23:45:44	00:02:50
NSPEC_01.TAB	E11INNSPEC_01	1997-11-07T23:52:49	00:02:48
IODISK02.TAB	E11IPIODISK02	1997-11-08T03:01:36 00):04:18
CHEMIS04.TAB	E11INCHEMIS04	1997-11-08T03:32:15	00:02:49

G1:

Filename	Observa	ation ID	Start Tim	ne	Duration		
GRSMNC01.	TAB G´	IJPGRSMNC	01 1	996-06	-26T22:5	6:24	01:03:21
GRSMND01.	TAB G´	IJPGRSMNE	01 1	996-06	-27T00:0	2:08	00:34:16
GRSEXC01.7	rab G1	JPGRSEXC	01 19	996-06-2	27T00:50):41	00:31:09
GRSRAD01.7	ГАВ G1	JPGRSRAD	01 19	996-06-2	27T01:24	4:02	00:15:54
MEMPIS01.T	AB G10	GNMEMPISC	1 19	96-06-2	27T03:14	:15 0	0:08:03

DRTM01.TAB	G1GPDRTM_01	1996-06-27T03:24:46 00:29:23
AMON_01.TAB	G1GNAMON01	1996-06-27T05:02:26 00:04:54
PTAH01.TAB	G1GNPTAH01	1996-06-27T05:11:30 00:03:54
HIRESS01.TAB	G1GPHIRESS01	1996-06-27T06:27:25 00:05:27
HIRESS02.TAB	G1GPHIRESS02	1996-06-27T06:43:40 00:07:57
DRKMAP01.TAB	G1GPDRKMAP0	1 1996-06-27T07:45:13 00:38:41
STP15001.TAB	G1GPSTP15001	1996-06-27T08:32:48 00:00:25
DRKMAP02.TAB	G1GPDRKMAP0	2 1996-06-27T08:59:01 02:15:35
GRS00501.TAB	G1JNGRS00501	1996-06-27T11:20:38 00:11:34
GLOBAL1A.TAB	G1JPGLOBAL01	PT1 1996-06-27T12:46:31 00:55:12
GLOBAL1B.TAB	G1JPGLOBAL01	PT2 1996-06-27T13:41:45 02:09:05
GLOBAL1C.TAB	G1JPGLOBAL01	PT3 1996-06-27T15:50:52 02:06:55
GLOBAL1D.TAB	G1JPGLOBAL01	PT4 1996-06-27T17:57:48 02:06:34
GLOBAL1E.TAB	G1JPGLOBAL01	_PT5 1996-06-27T20:04:24 01:38:42
GR043P01.TAB	G1JPGR043P01	1996-06-27T21:48:30 00:10:42
STP02503.TAB	G1EPSTP02503	1996-06-27T22:22:12 00:00:26
NHILAT01.TAB	G1ENNHILAT01	1996-06-28T00:00:56 00:30:06
STP04404.TAB	G1EPSTP04404	1996-06-28T03:03:14 00:00:26
STP05505.TAB	G1EPSTP05505	1996-06-28T05:27:14 00:00:26
STP06006.TAB	G1EPSTP06006	1996-06-28T06:30:32 00:00:26
STP06507.TAB	G1EPSTP06507	1996-06-28T07:30:32 00:00:26
GRS09102.TAB	G1JNGRS09102	1996-06-28T08:47:44 00:11:55
STP07008.TAB	G1EPSTP07008	1996-06-28T09:07:24 00:00:26
STP07509.TAB	G1EPSTP07509	1996-06-28T10:15:38 00:00:26
THRMAL02.TAB	G1INTHRMAL02	1996-06-28T11:23:26 00:01:36
VOLCAN05.TAB	G1INVOLCAN05	1996-06-28T11:28:30 00:00:08
STP08010.TAB	G1EPSTP08010	1996-06-28T12:02:53 00:00:26
RCTCAL01.TAB	G1NPRCTCAL01	1996-06-28T13:16:24 00:01:25
THRMAL03.TAB	G1INTHRMAL03	1996-06-28T13:54:06 00:03:24
STP08511.TAB	G1EPSTP08511	1996-06-28T14:02:50 00:00:26
IODISK01.TAB	G1IPIODISK01	1996-06-28T18:21:58 00:12:16
GR123P01.TAB	G1JPGR123P01	1996-06-28T18:36:12 00:13:30
GLOBAL02.TAB	G1JPGLOBAL02	1996-06-28T19:08:33 02:49:57
PLLOKI01.TAB	G1ISPLLOKI01	1996-06-29T01:06:31 00:00:27
PLATEN01.TAB	G1ISPLATEN01	1996-06-29T02:51:41 00:00:26
IOECLP01.TAB	G1IPIOECLP01	1996-06-29T03:37:57 00:04:40
IOECLI02.TAB	G1ISIOECLI02	1996-06-29T03:46:47 00:00:38
PLSHTX01.TAB	G1XBPLSHTX01	1996-06-30T02:00:52 00:02:01

C3:

Filename	Obser	vation ID	Start	Time	Duration	
RCTCAL01.	ТАВ С	3NPRCTCAL	_01	1996-11	-03T14:20:30	00:01:16
DRTM01.7	ТАВ С	3CPDRTM_	_01	1996-11	-04T11:02:28	00:46:42
ASGRAD01.	TAB C	3CNASGAR	D01	1996-1 ⁻	1-04T12:00:28	00:29:21
DRKMAP01	TAB C	C3CPDRKMA	P01	1996-1	1-04T12:34:29	00:12:03

1996-11-04T13:21:31 00:03:37
1996-11-04T13:52:15 00:06:01
1996-11-04T14:20:08 00:00:20
1996-11-04T14:26:00 01:34:24
1996-11-05T08:02:14 00:09:47
1996-11-05T08:23:28 00:25:28
1996-11-05T09:57:04 00:25:08
1996-11-05T20:48:40 00:51:16
1996-11-05T21:59:26 00:17:57
1996-11-05T23:02:25 00:17:17
1996-11-06T04:16:01 00:25:27
996-11-06T10:43:46 00:58:27
1996-11-06T11:52:35 00:07:23
1996-11-06T15:52:14 00:00:20
1996-11-06T17:33:30 00:38:12
1996-11-06T18:13:48 00:12:04
1996-11-06T20:20:02 00:11:05
1996-11-06T20:36:22 00:11:05
1996-11-06T21:10:13 00:00:21
1996-11-06T21:12:46 00:26:06
1996-11-06T22:23:32 00:00:20
1996-11-06T23:22:11 00:18:36
1996-11-07T00:49:08 00:00:20
1996-11-07T01:24:32 00:00:20
1996-11-07T05:17:04 00:00:20

E4:

Filename Ob	servation ID	Start Time	Duration	
FT1BAS01.TAB	E4JPFT1BAS01	1996-12	2-18T01:59:40	00:26:06
FT1D_01.TAB	E4JPFT1D01	1996-12-	-18T02:29:04	00:09:46
FT1RAD01.TAB	E4JPFT1RAD01	l 1996-12	2-18T04:07:04	00:45:42
FTP01601.TAB	E4JPFTP01601	1996-12-	18T12:44:45	00:29:23
IOMON_01.TAB	E4IPIOMON_01	1996-12	2-18T14:32:29	00:10:46
GLOBAL01.TAB	E4EPGLOBAL0	1 1996-1	2-18T20:17:20	00:15:00
IOLITE01.TAB	E4IPIOLITE01	1996-12-18	T22:06:56 0	0:22:11
DGTMDM01.TAE	B E4EPDGTMD	M01 1996	6-12-19T01:58	28 01:03:41
SUCOMP02.TAB	E4ENSUCOMF	P02 1996	-12-19T05:20:	25 00:09:18
SUCOMP03.TAB	E4ENSUCOMF	P03 1996	-12-19T06:25:	42 00:12:47
IOMON_02.TAB	E4IPIOMON_02	1996-12	2-19T08:37:52	00:09:07
DRKMAP02.TAB	E4EPDRKMAP	02 1996-	-12-19T09:43:3	35 01:05:00
FTP09501.TAB	E4JPFTP09501	1996-12-	19T11:10:23	00:07:30
IOECLP02.TAB	E4IPIOECLP02	1996-12-	19T15:36:28	00:10:06
RCTCAL01.TAB	E4NPRCTCAL0	1996-1	2-20T00:45:12	2 00:01:18

E6:

Filename Obs	servation ID Star	t Time Duration
RCTCAL01.TAB	E6NPRCTCAL01	1997-02-19T13:33:53 00:01:25
NSSTRP01.TAB	E6JPNSSTRP01	1997-02-19T18:46:35 00:51:35
CHEMIS02.TAB	E6INCHEMIS02	1997-02-20T04:02:42 00:03:31
NSSTRP02.TAB	E6JPNSSTRP02	1997-02-20T06:36:23 00:32:19
FT3EM101.TAB	E6JPFT3EM101	1997-02-20T10:27:56 00:32:20
IOLITE01.TAB E	E6IPIOLITE01 19	97-02-20T11:26:35 00:29:38
TERINC01.TAB	E6ENTERINC01	1997-02-20T12:04:05 00:31:12
DGTM01.TAB	E6EPDGTM01	1997-02-20T14:17:27 00:35:35
SUCOMP01.TAB	E6ENSUCOMP01	1997-02-20T16:13:44 00:08:04
SUCOMP02.TAB	E6ENSUCOMP02	1997-02-20T16:31:56 00:08:04
PPO06001.TAB	E6EPPPO06001	1997-02-20T16:49:20 00:05:16
PPO10602.TAB	E6EPPPO10602	1997-02-20T17:00:40 00:02:20
HIRESS01.TAB	E6EPHIRESS01	1997-02-20T17:06:18 00:16:12
DRKMAP01.TAB	E6EPDRKMAP01	1997-02-20T19:25:51 00:45:43
FT1EM101.TAB	E6JPFT1EM101	1997-02-20T21:04:06 00:42:16
FT1EM201.TAB	E6JPFT1EM201	1997-02-20T22:31:53 01:04:00
CHEMIS06.TAB	E6INCHEMIS06	1997-02-21T04:02:32 00:02:43
FT2EM201.TAB	E6JPFT2EM201	1997-02-21T07:12:37 00:36:09
FT2EM101.TAB	E6JPFT2EM101	1997-02-21T08:59:47 00:42:07
THRMNS01.TAB	E6JNTHRMNS01	1997-02-21T11:07:12 00:29:48
NSSTRP03.TAB	E6JPNSSTRP03	1997-02-21T14:51:39 00:25:08
GLOBAL01.TAB	E6GPGLOBAL01	1997-02-21T23:14:11 00:08:48
GLOBAL01.TAB	E6CNGLOBAL01	1997-02-22T22:08:16 00:08:14
DRKMAP01.TAB	E6CPDRKMAP01	1997-02-22T22:22:26 00:29:42

G7:

Filename (Observation ID	Start T	īme	Duration	
GLOBAL01.TA	B G7CSGLO	BAL01	1997-04-0	2T16:42:56	00:00:52
NSSTRP02.TA	B G7JPNSS	TRP02	1997-04-0	3T10:46:44	00:19:52
CHEMIS03.TA	B G7INCHEN	/IS03 19	997-04-03	T18:00:29	00:03:15
HRSPEC01.TA	B G7INHRSI	PEC01	1997-04-0	3T21:03:29	00:02:57
GLOBAL01.TA	B G7IPGLOE	BAL01 1	997-04-03	3T21:10:34	00:19:30
FTSEM201.TA	B G7JPFTSE	EM201 1	997-04-03	3T23:27:05	00:17:37
TOPMAP02.TA	B G7ISTOPI	MAP02	1997-04-0	4T01:46:38	00:00:06
DGTM01.TA	B G7EPDGT	M01	1997-04-0	4T02:35:09	01:03:41
LOWFOT01.TA	AB G7ESLOV	VFOT01	1997-04-	04T04:15:16	00:00:22
VLOFOT01.TA	B G7ESVLO	FOT01	1997-04-0	4T04:32:28	00:00:21
CHEMIS05.TA	B G7INCHEN	/IS05 19	997-04-04	T04:49:38	00:00:57
IOMON_01.TA	B G7IPIOMO	N_01 19	997-04-04	T04:57:43	00:01:17
TOPMAP03.TA	B G7ISTOPI	MAP03	1997-04-0	4T05:04:41	00:00:05
SMONHI01.TA	B G7ISSMO	NHI01 1	997-04-04	IT05:04:48	00:00:06
TYRMAC01.TA	AB G7ESTYR	MAC01	1997-04-	04T05:09:50	00:00:06
TYRMAC02.TA	AB G7ESTYR	MAC02	1997-04-	04T05:14:54	00:00:01

FEX02003.TAB	G7JNFEX00203	1997-04-04T05:20:58 00:01:40
TPO_3001.TAB	G7EPTPO_3001	1997-04-04T05:30:15 00:16:59
APEXCR01.TAB	G7ESAPEXCR01	1997-04-04T06:14:01 00:00:01
APEXCR02.TAB	G7ESAPEXCR02	1997-04-04T06:18:21 00:00:02
APEXCR03.TAB	G7ESAPEXCR03	1997-04-04T06:22:43 00:00:02
APEXCR04.TAB	G7ESAPEXCR04	1997-04-04T06:27:04 00:00:02
TPO 9002.TAB	G7EPTPO 9002	1997-04-04T06:33:46 00:18:36
DGTM 02.TAB	G7EPDGTM 02	1997-04-04T06:57:02 00:40:09
DRKMAP01.TAB	G7EPDRKMAP01	1997-04-04T07:42:32 01:34:41
RCTCAL01.TAB	G7NPRCTCAL01	1997-04-04T11:03:28 00:01:04
HOTMAP01.TAB	G7JPHOTMAP01	1997-04-04T11:36:06 01:01:24
REGMAP01.TAB	G7JPREGMAP01	1997-04-04T12:59:00 00:46:42
GRSEM201.TAB	G7JPGRSEM201	1997-04-04T18:37:44 00:45:04
GRSEM101.TAB	G7JPGRSEM101	1997-04-04T19:39:24 00:26:07
FTNEM101.TAB	G7JPFTNEM101	1997-04-04T20:26:56 00:35:46
FEAP6602.TAB	G7JNFEAP6602	1997-04-04T21:15:28 00:05:00
PFTB6602.TAB	G7JNPFTB6602	1997-04-04T21:25:30 00:00:03
FTSEM101.TAB	G7JPFTSEM101	1997-04-04T21:42:45 00:16:15
FEA53M01.TAB	G7JNFEA53M01	1997-04-04T22:10:50 00:10:18
FTNEM201.TAB	G7JPFTNEM201	1997-04-04T22:26:14 00:24:49
DRTM_01.TAB	G7GPDRTM_01	1997-04-05T01:04:59 00:44:24
EWSTRP01.TAB	G7JPEWSTRP01	1997-04-05T02:19:48 00:15:20
DRKMAP01.TAB	G7GPDRKMAP01	1997-04-05T03:41:43 00:45:08
HILAT_01.TAB	G7GNHILAT_01	1997-04-05T04:33:16 00:23:03
THRMAL06.TAB	G7INTHRMAL06	1997-04-05T05:09:36 00:00:03
PALIMP01.TAB	G7GSPALIMP01	1997-04-05T05:40:02 00:00:05
ENKIDU01.TAB	G7GPENKIDU01	1997-04-05T06:00:14 00:06:50
CATENA01.TAB	G7GSCATENA01	1997-04-05T06:12:22 00:00:13
BRITRL01.TAB	G7GNBRITRL01	1997-04-05T06:20:26 00:04:44
NICHOL01.TAB	G7GSNICHOL01	1997-04-05T06:31:36 00:00:22
ACHELS01.TAB	G7GSACHELS01	1997-04-05T06:33:37 00:00:14
NUNSUL01.TAB	G7GSNUNSUL01	1997-04-05T06:35:38 00:00:14
NEITH_01.TAB	G7GSNEITH_01	1997-04-05T06:37:40 00:00:18
KITTU_01.TAB	G7GSKITTU_01	1997-04-05T06:39:46 00:00:52
KITTU_02.TAB	G7GSKITTU_02	1997-04-05T06:40:41 00:00:43
KITTUN01.TAB	G7GNKITTU_01	1997-04-05T06:42:42 00:11:38
HIRESS01.TAB	G7GPHIRESS01	1997-04-05T07:11:00 00:14:09
DRKMAP02.TAB	G7GPDRKMAP02	1997-04-05T08:45:02 01:07:19
STP12001.TAB	G7GPSTP12001	1997-04-05T10:02:52 00:08:10
STP12501.TAB	G7IPSTP12501	1997-04-05T11:05:34 00:00:17
STP12001.TAB	G7EPSTP12001	1997-04-05T11:17:42 00:00:17
STP13501.TAB	G7CPSTP13501	1997-04-05T11:58:09 00:00:17
FTP13003.TAB	G7JPFTP13003	1997-04-05T16:44:18 00:18:10
FEA13002.TAB	G7JNFEA13002	1997-04-05T17:05:32 00:01:39
STP14501.TAB	G7IPSTP14501	1997-04-05T17:24:45 00:00:17
EWSTRP02.TAB	G7JPEWSTRP02	1997-04-05T22:24:01 00:20:00

STP15501.TAB	G7IPSTP15501	1997-04-06T06:20:16	00:00:17
STP15501.TAB	G7CPSTP15501	1997-04-06T10:05:44	00:00:17
STP13001.TAB	G7EPSTP13001	1997-04-06T11:57:58	00:00:17

G8:

Filename Ob	servation ID Sta	art Time Duration
POLMAP01.TAB	G8CPPOLMAP01	1997-05-06T09:38:10 01:10:39
SPOLE_01.TAB	G8CNSPOLE_01	1997-05-06T11:18:24 00:30:04
STP04101.TAB	G8CPSTP04101	1997-05-06T11:54:40 00:10:43
BURI01.TAB	G8CNBURI_01	1997-05-06T12:15:53 00:10:45
ADLIND01.TAB	G8CNADLIND01	1997-05-06T12:31:03 00:18:36
STP06101.TAB	G8CPSTP06101	1997-05-06T13:00:20 00:03:28
POLMAP02.TAB	G8CPPOLMAP02	1997-05-06T13:39:49 00:28:35
POLMAP03.TAB	G8CPPOLMAP03	1997-05-06T16:15:31 00:09:23
IOMON_01.TAB	G8IPIOMON_01	1997-05-07T10:51:47 00:06:42
VOLCAN04.TAB	G8INVOLCAN04	1997-05-07T12:09:38 00:01:41
OSIRIS01.TAB	G8GNOSIRIS01	1997-05-07T13:09:17 00:11:14
POLMAP01.TAB	G8GPPOLMAP01	1997-05-07T13:34:34 00:35:49
URUK_01.TAB	G8GNURUK_01	1997-05-07T14:36:15 00:19:00
TRANSI01.TAB	G8GNTRANSI01	1997-05-07T14:57:29 00:07:30
LIDARK01.TAB	G8GNLIDARK01	1997-05-07T15:07:35 00:05:50
MELKAR01.TAB	G8GNMELKAR01	1997-05-07T15:26:48 00:08:27
DARTRL01.TAB	G8GNDARTRL01	1997-05-07T15:40:56 00:06:40
STP15601.TAB	G8GPSTP15601	1997-05-07T16:12:18 00:00:21
STP14402.TAB	G8GPSTP14402	1997-05-07T16:19:23 00:00:21
STP12704.TAB	G8GPSTP12704	1997-05-07T16:58:49 00:00:26
POLMAP02.TAB	G8GPPOLMAP02	1997-05-07T17:00:51 01:09:51
STP03901.TAB	G8EPSTP03901	1997-05-07T18:33:52 00:00:25
FEA04101.TAB	G8JNFEA04101	1997-05-07T21:28:47 00:01:38
FT2BAS01.TAB	G8JPFT2BAS01	1997-05-07T21:35:13 00:42:05
FT2RAD01.TAB	G8JPFT2RAD01	1997-05-07T23:19:59 00:12:04
NSSTRP01.TAB	G8JPNSSTRP01	1997-05-08T05:03:46 01:01:47
STP02501.TAB	G8EPSTP02501	1997-05-08T09:08:29 00:00:24
FEAP1001.TAB	G8JNFEAP1001	1997-05-08T09:25:39 00:05:00
FTP01001.TAB	G8JPFTP01001	1997-05-08T09:46:53 00:15:38
RCTCAL01.TAB	G8NPRCTCAL01	1997-05-08T10:35:09 00:01:20
PFTB1003.TAB	G8JNPFTB1003	1997-05-08T11:14:51 00:07:04
FEAP1002.TAB	G8JNFEAP1002	1997-05-08T11:26:56 00:05:02
STP02001.TAB	G8IPSTP02001	1997-05-08T12:18:33 00:00:26
STP04101.TAB	G8EPSTP04101	1997-05-08T12:29:41 00:00:26
STP05001.TAB	G8IPSTP05001	1997-05-08T15:25:37 00:00:26
HOT05801.TAB	G8JPHOT05801	1997-05-08T15:32:42 00:59:06
NSSTRP02.TAB	G8JPNSSTRP02	1997-05-08T16:43:27 00:32:40
GRS05901.TAB	G8JPGRS05901	1997-05-08T17:24:55 01:00:28
STP07001.TAB	G8EPSTP07001	1997-05-08T18:39:44 00:00:25

REG06201.TAB	G8JPREG06201	1997-05-08T18:44:48	01:02:14
STP07001.TAB	G8IPSTP07001	1997-05-08T19:53:34	00:00:25
FEAP7101.TAB	G8JNFEAP7101	1997-05-08T20:01:39	00:04:59
PFTB7101.TAB	G8JNPFTB7101	1997-05-08T20:12:46	00:06:59
FT1BAS01.TAB	G8JPFT1BAS01	1997-05-08T20:20:51	00:31:47
PFTB7102.TAB	G8JNPFTB7102	1997-05-08T21:04:20	00:06:59
FEAP7102.TAB	G8JNFEAP7102	1997-05-08T21:17:29	00:04:58
STP12001.TAB	G8CPSTP12001	1997-05-08T21:34:39	00:00:25
STP09901.TAB	G8IPSTP09901	1997-05-09T01:24:11	00:00:25
STP10001.TAB	G8EPSTP10001	1997-05-09T02:36:59	00:00:25
REG09301.TAB	G8JPREG09301	1997-05-09T03:13:43	00:17:27
GRS09801.TAB	G8JPGRS09801	1997-05-09T03:39:41	00:22:22
HOT09601.TAB	G8JPHOT09601	1997-05-09T05:10:41	00:37:36
FEA10401.TAB	G8JNFEA10401	1997-05-09T06:38:39	00:01:39
FTP10402.TAB	G8JPFTP10402	1997-05-09T06:58:53	00:14:44
FEA10402.TAB	G8JNFEA10402	1997-05-09T07:19:05	00:00:48
REG10401.TAB	G8JPREG10401	1997-05-09T08:00:51	00:35:22
STP13001.TAB	G8IPSTP13001	1997-05-09T11:22:47	00:00:25
STP13601.TAB	G8CPSTP13601	1997-05-09T11:27:50	00:00:25
STP14001.TAB	G8EPSTP14001	1997-05-09T18:45:39	00:00:25
STP14001.TAB	G8IPSTP14001	1997-05-10T20:12:25	00:00:26

C9:

Filename Ob	servation ID Sta	art Time	Duration	
REGMAP01.TAB	C9JPREGMAP01	1997-06	6-25T01:53:13	04:10:51
REGMAP02.TAB	C9JPREGMAP02	1997-06	6-25T09:53:28	01:08:58
POLMAP01.TAB	C9CPPOLMAP01	1997-06	-25T11:42:41	00:53:44
ANARR_01.TAB	C9CNANARR_01	1997-06·	-25T13:59:09	00:12:09
CRATER01.TAB	C9CSCRATER01	1997-06	-25T14:23:28	00:00:49
SKULD_01.TAB	C9CNSKULD_01	1997-06-2	25T14:29:31	00:10:00
NOLAT_01.TAB	C9CNNOLAT_01	1997-06-2	25T14:57:45	00:10:44
VALHAL01.TAB	C9CSVALHAL01	1997-06-2	25T15:13:01	00:01:58
VALSPC01.TAB	C9CNVALSPC01	1997-06-	25T15:19:03	00:06:40
POLMAP02.TAB	C9CPPOLMAP02	1997-06	-25T16:07:35	01:02:14
POLMAP01.TAB	C9GPPOLMAP01	1997-06	-26T13:57:59	01:36:44
CLIPSE01.TAB	C9ENCLIPSE01	1997-06-26	6T16:00:20 (00:04:44
STP00403.TAB	C9GPSTP00403	1997-06-2	6T16:23:35	00:08:29
BRILED01.TAB	C9GNBRILED01	1997-06-2	6T17:27:17	00:11:18
SULCUS01.TAB	C9GSSULCUS01	1997-06	-26T17:55:37	00:00:32
STP04604.TAB	C9GPSTP04604	1997-06-2	6T18:03:41	00:19:14
CLIPSE03.TAB	C9ENCLIPSE03	1997-06-26	6T18:50:12 (00:04:42
POLMAP02.TAB	C9GPPOLMAP02	1997-06	-26T19:10:25	01:02:41
GRS05101.TAB	C9JNGRS05101	1997-06-2	6T20:24:14	00:03:18
GRS05102.TAB	C9JNGRS05102	1997-06-2	6T20:44:23	00:03:22
FT1BAS01.TAB	C9JPFT1BAS01	1997-06-2	6T20:53:33	00:29:05

GRS05103.TAB	C9JNGRS05103	1997-06-26T21:50:09 00:03:22
GLOBAL02.TAB	C9GNGLOBAL02	1997-06-26T21:58:12 00:20:10
FT1RAD01.TAB	C9JPFT1RAD01	1997-06-26T22:26:34 00:17:00
FT2BAS01.TAB	C9JPFT2BAS01	1997-06-27T03:03:37 00:31:20
GLOBAL01.TAB	C9ESGLOBAL01	1997-06-27T03:50:09 00:00:54
FT2RAD01.TAB	C9JPFT2RAD01	1997-06-27T04:32:35 00:59:06
PHOTOM01.TAB	C9ISPHOTOM01	1997-06-27T06:01:35 00:00:07
GRS01102.TAB	C9JNGRS01102	1997-06-27T06:38:59 00:03:20
GRS01103.TAB	C9JNGRS01103	1997-06-27T08:24:09 00:03:19
CHEMIS01.TAB	C9INCHEMIS01	1997-06-27T10:36:36 00:02:01
GRS03901.TAB	C9JNGRS03901	1997-06-27T17:08:55 00:03:19
STP06501.TAB	C9IPSTP06501	1997-06-27T17:17:00 00:10:43
NSSTRP02.TAB	C9JPNSSTRP02	1997-06-27T20:59:26 00:33:07
VOLCAN01.TAB	C9INVOLCAN01	1997-06-27T21:36:51 00:01:33
CHEMIS03.TAB	C9INCHEMIS03	1997-06-27T22:31:23 00:03:24
FEA05701.TAB	C9JNFEA05701	1997-06-27T22:46:34 00:08:26
FEA05702.TAB	C9JNFEA05702	1997-06-28T00:32:47 00:03:19
FTP25701.TAB	C9JPFTP25701	1997-06-28T00:40:52 00:27:18
FEA05703.TAB	C9JNFEA05703	1997-06-28T01:13:14 00:03:20
FEA05704.TAB	C9JNFEA05704	1997-06-28T02:01:46 00:03:19
STP08101.TAB	C9IPSTP08101	1997-06-28T02:10:51 00:16:06
FTP19502.TAB	C9JPFTP19502	1997-06-28T15:43:47 00:15:39
NSSTRP03.TAB	C9JPNSSTRP03	1997-06-28T17:51:12 00:39:23
ECLIPS02.TAB	C9ISECLIPS02	1997-06-28T18:36:44 00:00:27
CHEMIS06.TAB	C9INCHEMIS06	1997-06-28T18:42:46 00:02:34
STP14505.TAB	C9GPSTP14505	1997-06-28T19:37:22 00:00:25
FEA10201.TAB	C9JNFEA10201	1997-06-28T21:00:16 00:03:20
FTP10202.TAB	C9JPFTP10202	1997-06-28T21:08:22 00:16:33
RCTCAL01.TAB	C9NPRCTCAL01	1997-07-14T11:36:59 00:02:47
PCTCAL01.TAB	C9NPPCTCAL01	1997-07-14T11:43:20 00:10:57

C10:

Filename Obs	servation ID	Start Time	Duration	
DRTM01.TAB	C10CPDRTM_(01 1997-	-09-16T19:39:14	00:48:20
DRKMAP01.TAB	C10CPDRKMAF	PO1 1997	7-09-16T20:46:59	01:23:53
RCTCAL01.TAB	C10NPRCTCAL	01 1997-	-09-16T22:19:00	00:00:42
ASGARDS1.TAB	C10CSASGARE	001 1997	7-09-16T23:56:05	00:01:39
ASGARDN1.TAB	C10CNASGAR	DO1 199	7-09-17T00:00:06	00:08:57
PALIMP01.TAB	C10CNPALIMP01	1997-0	9-17T00:29:24	00:05:00
SMTHPLS1.TAB	C10CSSMTHPL	01 1997	-09-17T00:35:31	00:00:04
SMTHPLN1.TAB	C10CNSMTHPL	01 1997	'-09-17T00:37:30	00:11:01
VALHAL01.TAB	C10CNVALHAL0	1 1997-0	09-17T00:53:42	00:08:58
CATENA01.TAB	C10CNCATENA	01 1997	-09-17T01:29:05	00:22:59
DRTM02.TAB	C10CPDRTM_(02 1997-	-09-17T02:00:25	00:34:17
DRKMAP02.TAB	C10CPDRKMAF	PO2 1997	7-09-17T02:37:50	01:11:32

CHEMIS01.TAB	C10INCHEMIS01	1997-09-18T07:50:06 00:02:49
NPOLEM06.TAB	C10JNNPOLEM06	1997-09-18T08:25:29 00:13:33
NSSTRP01.TAB	C10JPNSSTRP01	1997-09-18T08:43:41 00:27:49
SPOLEM08.TAB	C10JNSPOLEM08	1997-09-18T09:32:13 00:11:26
NPOLEM01.TAB	C10JNNPOLEM01	1997-09-18T09:48:24 00:13:32
SPOLEM01.TAB	C10JNSPOLEM01	1997-09-18T10:27:50 00:13:38
NPOLEM02.TAB	C10JNNPOLEM02	1997-09-18T11:03:10 00:13:41
SPOLEM02.TAB	C10JNSPOLEM02	1997-09-18T11:42:36 00:13:41
FEA04101.TAB	C10JNFEA04101	1997-09-18T12:07:52 00:03:36
NPOLEM03.TAB	C10JNNPOLEM03	1997-09-18T12:18:02 00:11:32
FNP04101.TAB	C10JNFNP04101	1997-09-18T13:48:18 00:13:17
SPAURD01.TAB	C10JNSPAURD01	1997-09-18T14:03:08 00:24:11
SPOLEM04.TAB	C10JNSPOLEM04	1997-09-18T14:33:28 00:13:37
FNP04102.TAB	C10JNFNP04102	1997-09-18T14:50:39 00:11:35
SPOLEM05.TAB	C10JNSPOLEM05	1997-09-18T15:28:08 00:13:33
NPOLEM04.TAB	C10JNNPOLEM04	1997-09-18T16:02:26 00:13:38
SPOLEM06.TAB	C10JNSPOLEM06	1997-09-18T16:42:53 00:13:37
NPOLEM05.TAB	C10JNNPOLEM05	1997-09-18T17:18:20 00:13:34
SPOLEM07.TAB	C10JNSPOLEM07	1997-09-18T17:57:42 00:13:38
SPAURD02.TAB	C10JNSPAURD02	1997-09-18T18:47:15 00:23:03
IOMON_02.TAB	C10IPIOMON_02	1997-09-18T19:19:40 00:19:09
NOISE_01.TAB	C10NPNOISE_01	1997-09-18T20:51:40 00:05:02
REGMAP01.TAB	C10JPREGMAP01	1997-09-18T21:25:02 01:00:44
FEA02101.TAB	C10JNFEA02101	1997-09-18T23:23:21 00:03:33
FT2BAS01.TAB	C10JPFT2BAS01	1997-09-18T23:28:24 00:14:26
FEASUB01.TAB	C10JNFEASUB01	1997-09-19T00:24:01 00:11:59
FT1BAS01.TAB	C10JPFT1BAS01	1997-09-19T01:06:29 01:10:09
FEA02102.TAB	C10JNFEA02102	1997-09-19T02:22:19 00:03:33
REGMAP02.TAB	C10JPREGMAP02	1997-09-19T02:30:24 01:33:38
IOMON_01.TAB	C10IPIOMON_01	1997-09-19T04:05:26 00:35:47
HRSPEC01.TAB	C10INHRSPEC01	1997-09-19T04:42:48 00:10:19
NSPEC_01.TAB	C10INNSPEC_01	1997-09-19T04:56:58 00:05:43
FEA07401.TAB	C10JNFEA07401	1997-09-19T10:08:26 00:03:40
CHEMIS05.TAB	C10INCHEMIS05	1997-09-19T10:24:37 00:02:28
THRCYL01.TAB	C10JNTHRCYL01	1997-09-19T10:40:48 00:19:59
FEA07402.TAB	C10JNFEA07402	1997-09-19T11:14:06 00:02:08
THRCYL02.TAB	C10JNTHRCYL02	1997-09-19T11:22:12 00:20:02
FEA07403.TAB	C10JNFEA07403	1997-09-19T11:52:32 00:03:48
THRCYL03.TAB	C10JNTHRCYL03	1997-09-19T12:02:38 00:21:44
THRCYL04.TAB	C10JNTHRCYL04	1997-09-19T13:00:20 00:22:31
IOMON_03.TAB	C10IPIOMON_03	1997-09-19T15:33:00 00:18:46
REGMAP04.TAB	C10JPREGMAP04	1997-09-19T16:24:34 01:29:41
REGMAP05.TAB	C10JPREGMAP05	1997-09-19T19:03:19 01:31:35
FEA09901.TAB	C10JNFEA09901	1997-09-19T20:57:34 00:03:38
FEA09902.TAB	C10JNFEA09902	1997-09-19T21:38:01 00:03:38
CHEMIS07.TAB	C10INCHEMIS07	1997-09-19T21:57:10 00:01:29

FEA09903.TAB	C10JNFEA09903	1997-09-19T22:10:22	00:03:40
FEA53M01.TAB	C10JNFEA53M01	1997-09-19T22:54:51	00:25:56
SPAURN01.TAB	C10JNSPAURN01	1997-09-20T04:14:22	00:29:09
REGMAP03.TAB	C10JPREGMAP03	1997-09-20T06:00:32	2 01:31:50
FEA11401.TAB	C10JNFEA11401	1997-09-20T07:37:36	00:03:45
FEA11402.TAB	C10JNFEA11402	1997-09-20T08:07:53	00:03:28

E11:

Filename	Obs	servation ID	St St	art Time	Dur	ation	
RCTCAL01.T	AB	E11NPRC	TCAL01	1997-	11-04T	23:47:01	00:01:25
DGTM01.T	AB	E11CPDC	GTM01	1997-	-11-05T	06:39:28	00:07:10
BRG53M02.T	AB	E11JNBR	G53M02	1997-	-11-05T	17:20:53	00:19:59
CYLMOS06.T	AB	E11JNCY	LMOS06	5 1997	-11-06T	02:47:06	3 00:10:02
M17HR_01.T	AB	E11ENM1	7HR_01	1997-	11-06T(03:00:12	00:19:09
M15HR_01.T	AB	E11ENM1	5HR_01	1997-	11-06T()5:24:50	00:20:58
GLOBAL10.T	AB	E11JPGL	OBAL10	1997-	11-06T1	0:45:43	02:52:51
BRG04203.T/	٩В	E11JNBR	G04203	1997-1	1-06T1	4:31:51	00:06:41
GLOBAL21.T.	AB	E11JPGL	OBAL21	1997-	11-06T1	4:39:18	00:43:00
BRG04204.T/	٩B	E11JNBR	G04204	1997-1	1-06T1	5:26:27	00:06:41
GLOBAL22.T.	AB	E11JPGL	OBAL22	1997-	11-06T1	5:34:14	01:10:52
HOTSPT01.T	AB	E11EPHC	DTSPT01	1997-	·11-06T	17:50:24	00:46:38
DRKLIT01.TA	В	E11ENDR	KLIT01	1997-11	I-06T18	:49:42	00:12:00
CYCLOD01.T	AB	E11ENC)	CLOD0	1 1997	-11-06T	19:27:06	3 00:11:59
HOTSPT02.T	AB	E11EPHC	TSPT02	1997-	-11-06T	21:36:31	01:04:25
THRMNS01.7	ΆB	E11JNTF	IRMNS0 ⁻	1 1997	' <mark>-11-07</mark> 7	01:06:50	00:46:08
BRGFUL01.T	AB	E11JNBR	GFUL01	1997-	11-07T(02:48:57	00:20:01
BRG02003.T/	٩B	E11JNBR	G02003	1997-1	1-07T0	3:36:28	00:04:52
GLOBAL31.T.	AB	E11JPGL	OBAL31	1997-	11-07TC)5:57:04	00:32:52
GLOBAL32.T.	AB	E11JPGL	OBAL32	1997-	11-07TC	6:40:12	00:51:20
CHEMIS01.T/	٩B	E11INCHE	EMIS01	1997-1	1-07T07	7:46:12	00:02:32
GLOBAL40.T	AB	E11JPGL	OBAL40	1997- ⁻	11-07TC)7:51:57	01:36:33
CHEMIS02.T/	٩B	E11INCHE	EMIS02	1997-1	1-07T16	6:12:47	00:02:51
IODISK01.TA	B	E11IPIODIS	SK01	1997-11-0	07T19:0	0:59 0	0:04:41
CHEMIS03.T/	٩B	E11INCHE	EMIS03	1997-1	1-07T19	9:47:08	00:02:00
HRSPEC01.T	AB	E11INHR	SPEC01	1997-	11-07T2	23:45:44	00:02:50
NSPEC_01.T.	AB	E11INNSF	PEC_01	1997-1	1-07T2	3:52:49	00:02:48
IODISK02.TA	B	E11IPIODIS	SK02	1997-11-(08T03:0	1:36 0	0:04:18
CHEMIS04.T/	٩B	E11INCHE	EMIS04	1997-1	1-08T03	3:32:15	00:02:49

E12:

Filename	Observat	ion ID	Start	Time	Duration	
RCTCAL01.T	AB E12	NPRCTCAI	L01	1997-12-	15T12:13:04	00:01:25
GLOBAL01.T	AB E12	ENGLOBAI	_01	1997-12-	16T07:12:00	00:16:03
HOTSPT01.T	AB E12	EPHOTSP	T01	1997-12-	-16T10:00:26	01:05:47

DLINEA01.TAB	E12ENDLINEA01	1997-12-16T11:17:38 C	0:06:59
CPWYLL01.TAB	E12ENCPWYLL01	1997-12-16T11:43:55	00:07:17
ICEBRG01.TAB	E12ENICEBRG01	1997-12-16T12:48:07	00:10:26
HOTSPT02.TAB	E12EPHOTSPT02	1997-12-16T13:07:29	00:41:55
HRSPEC01.TAB	E12INHRSPEC01	1997-12-16T14:14:35	00:04:11
COOLDN01.TAB	E12NPCOOLDN01	1997-12-16T20:37:48	00:03:00

E14:

Filename Obs	servation ID Star	t Time	Duration	
IOMON_01.TAB	E14IPIOMON_01	1998-03-	-29T03:57:16	00:50:36
HRSPEC01.TAB	E14INHRSPEC01	1998-03	3-29T04:52:10	00:16:00
DARKHR01.TAB	E14EPDARKHR01	1998-0)3-29T11:10:05	00:55:50
ICERAF01.TAB	E14ENICERAF01	1998-03-	29T12:10:59	00:30:56
SUCOMP01.TAB	E14ENSUCOMP01	1998-	03-29T13:31:52	2 00:18:58
SUCOMP02.TAB	E14ENSUCOMP02	1998-	03-29T14:10:17	7 00:10:57
SUCOMP03.TAB	E14ENSUCOMP03	1998-	03-29T14:28:30	00:18:58
DGTMHR01.TAB	E14EPDGTMHR01	1998-	03-29T14:51:30	00:54:52
DRKMAP01.TAB	E14EPDRKMAP01	1998-(03-29T15:52:28	00:54:32
RCTCAL01.TAB	E14NPRCTCAL01	1998-03	3-30T12:23:42	00:01:26

E15:

Filename Ot	servation ID	Start Tir	me D	uration	
HIPHAS01.TAB	E15ISHIPHAS	01 199	8-05-30T2	23:58:54	00:00:26
ECLIPS01.TAB	E15ISECLIPS0	1 1998	3-05-31T0	0:17:14 (0:00:01
ECLIPS02.TAB	E15ISECLIPS0	2 1998	3-05-31T0	0:50:59 (0:07:52
RCTCAL01.TAB	E15NPRCTCA	L01 1	998-05-31	T09:50:04	00:01:25
HRSPEC01.TAB	E15INHRSPE	C01 1	998-05-31	T13:18:38	00:21:03
HRSPEC02.TAB	E15INHRSPE	C02 1	998-05-31	T17:37:28	00:18:46
DRKMAP01.TAE	E15EPDRKM	AP01	1998-05-3	31T17:57:24	4 01:10:52
DRTMHR01.TAE	B E15EPDRTM	HR01	1998-05-3	31T19:10:1	0 00:55:12
REGMAP01.TAE	B E15ESREGM	AP01	1998-05-3	B1T20:10:1	2 00:01:14
PHOTOM01.TAE	B E15ESPHOT	OM01	1998-05-3	31T20:16:1	5 00:00:23
CILIXS01.TAB	E15ESCILIXS01	1998	-05-31T20):42:28 0	0:00:27
REGION01.TAB	E15ENREGIO	N01 1	998-05-31	T20:44:32	00:19:09
CILIXS02.TAB	E15ESCILIXS02	1998	-05-31T21	:07:16 0	0:01:30
RELIEF01.TAB	E15ESRELIEF)1 199	8-05-31T2	21:10:26	00:00:21
RELIEF02.TAB	E15ESRELIEF)2 199	8-05-31T2	21:17:30	00:00:22
SUCOMP01.TAE	B E15ENSUCO	MP01	1998-05-3	31T21:21:5	6 00:19:12
SUCOMP02.TAE	B E15ENSUCO	MP02	1998-05-3	31T21:50:1	6 00:19:08
REGMAP02.TAE	B E15ESREGM	AP02	1998-05-3	31T22:15:3	4 00:02:32
SUCOMP03.TAE	B E15ENSUCO	MP03	1998-05-3	31T22:22:3	00:10:03
DARKHR01.TAB	E15EPDARK	HR01	1998-05-3	1T22:40:37	1 00:55:51
DGTM_01.TAB	E15EPDGTM	_01 1	998-05-31	IT23:40:29	00:32:19
GLOBAL01.TAB	E15ENGLOBA	L01 1	998-06-01	T02:20:13	00:30:16

RCTCAL02.TAB	E15NPRCTCAL02	1998-06-01T10:34:22	00:01:26
EUR16H01.TAB	E15ENEUR16H01	1998-06-01T13:20:28	00:11:45
EUR20H01.TAB	E15ENEUR20H01	1998-06-01T17:50:27	00:10:55
ECLIPS03.TAB	E15ISECLIPS03	1998-06-01T18:46:38 (00:03:49
EUR22H01.TAB	E15ENEUR22H01	1998-06-01T19:05:16	00:10:05
ECLIPS04.TAB	E15ISECLIPS04	1998-06-01T19:39:12 (00:03:50
KANEHI01.TAB	E15ISKANEHI01	1998-06-01T21:18:48	00:00:01

E16:

Filename Obs	servation ID	Start Time	Duration	
HRSPEC02.TAB	E16INHRSPEC	02 1998	-07-20T06:06:04	00:02:45
RCTCAL01.TAB	E16NPRCTCAL	.01 1998	B-07-20T11:20:14	00:01:25
IOMON_01.TAB	E16IPIOMON_0)1 1998-(07-20T11:30:37	00:16:55
WHTOVL01.TAB	E16JPWHTOV	L01 1998	8-07-20T13:18:50	00:23:33
WAVEST01.TAB	E16JPWAVES	F01 1998	8-07-20T14:20:31	01:57:14
HOTMAP01.TAB	E16JNHOTMA	P01 1998	8-07-20T16:22:5	1 00:23:45
WAVEST02.TAB	E16JPWAVES	F02 1998	8-07-20T16:58:53	00:25:28

E17:

Filename Ob	servation ID Star	t Time Duration	
EUR20H01.TAB	E17ENEUR20H01	1998-09-25T06:57:45	00:09:04
WHTOVL03.TAB	E17JNWHTOVL03	1998-09-25T12:32:26	00:09:57
GSHAPE01.TAB	E17ESGSHAPE01	1998-09-25T12:57:29	00:00:05
RCTCAL01.TAB	E17NPRCTCAL01	1998-09-25T20:20:16	00:01:25
WAVEST01.TAB	E17JPWAVEST01	1998-09-25T20:27:41	00:11:32
WAVEST02.TAB	E17JPWAVEST02	1998-09-25T21:43:31	00:03:41
GLOBAL01.TAB	E17ENGLOBAL01	1998-09-25T22:55:18	00:44:55
DRTM01.TAB	E17EPDRTM01	1998-09-26T00:25:57	00:48:40
DRKPOL01.TAB	E17EPDRKPOL01	1998-09-26T01:15:51	00:23:11
DARKHR01.TAB	E17EPDARKHR01	1998-09-26T01:42:09	00:04:20
DISSRR01.TAB	E17ESDISSRR01	1998-09-26T03:41:55	00:00:14
AGENOR01.TAB	E17ESAGENOR01	1998-09-26T03:44:05	00:01:06
THRACE01.TAB	E17ESTHRACE01	1998-09-26T03:46:15	00:00:23
LIBLIN01.TAB	E17ESLIBLIN01 19	998-09-26T03:47:50 00:	00:15
STRSLP01.TAB	E17ESSTRSLP01	1998-09-26T03:49:34	00:01:15
RHIANN01.TAB	E17ESRHIANN01	1998-09-26T03:52:10	00:00:06
THYLIN01.TAB	E17ESTHYLIN01	1998-09-26T03:53:45 C	0:00:28
SOUTHP01.TAB	E17ESSOUTHP01	1998-09-26T03:55:38	00:00:34
REGMAP02.TAB	E17ESREGMAP02	1998-09-26T04:56:10	00:02:23
REGMAP03.TAB	E17ESREGMAP03	1998-09-26T04:59:55	00:00:14
DARKHR02.TAB	E17EPDARKHR02	1998-09-26T05:00:59	00:59:06
DRKMAP02.TAB	E17EPDRKMAP02	1998-09-26T06:26:55	01:14:08
DRKMAP03.TAB	E17EPDRKMAP03	1998-09-26T07:42:06	01:14:47
RCTCAL02.TAB	E17NPRCTCAL02	1998-09-26T09:00:58	00:01:56

E18:

Observation ID Start Time Duration Filename STP10601.TAB E18IPSTP10601 1998-11-21T14:17:12 00:01:16 GLOBAL01.TAB E18EPGLOBAL01 1998-11-21T18:48:39 00:00:51 WHTOVL01.TAB E18JNWHTOVL01 1998-11-22T00:31:18 00:16:05 RCTCAL01.TAB E18NPRCTCAL01 1998-11-22T03:14:51 00:01:20

E19:

Observation ID Start Time Filename Duration RCTCAL01.TAB E19NPRCTCAL01 1999-01-31T10:47:25 00:01:21 POL09001.TAB E19JPPOL09001 1999-01-31T11:05:48 02:06:19 GLOBAL01.TAB E19EPGLOBAL01 1999-01-31T21:23:17 00:21:00 POL05102.TAB E19JPPOL05102 1999-01-31T22:05:45 01:51:58 REGMAP01.TAB E19EPREGMAP01 1999-02-01T00:20:14 00:50:07 STP04203.TAB E19GPSTP04203 1999-02-01T03:13:06 00:01:19

C21:

Filename	Observation	ation ID	Start 7	Гime	Duration	
RCTCAL01.T	AB C2	1NPRCTCA	L01	1999-06	-30T04:51:59	00:06:29
CALCOL01.T	AB C2	1NMCALCO	DL01	1999-06	6-30T05:12:3	1 00:04:02
HIRESS01.TA	AB C2 ²	1CPHIRESS	501 1	999-06-	30T07:52:56	00:10:45
GLOBAL01.T	AB C2	1IPGLOBAL	_01 ′	1999-07-	01T22:15:15	00:15:53
GLOBAL02.T	AB C2	1IPGLOBAL	_02	1999-07-	02T04:13:09	01:03:12
HRSPEC01.T	AB C2	21INHRSPE	C01	1999-07	-02T07:03:14	00:55:44
GLOBAL03.T	AB C2	1IPGLOBAL	_03	1999-07-	02T14:19:51	00:16:15
RCTCAL02.T	AB C2	1NPRCTCA	L02	1999-07	-02T15:09:32	2 00:01:22

C22:

Filename	Observa	tion ID	Start Tim	e D	uration	
RCTCAL01.	TAB C22	NPRCTCAL	.01 19	99-08-11	IT16:23:06	00:01:25
REGMAP01	TAB C2	2JPREGMA	P01 19	999-08-1	1T19:51:46	02:07:35
REGMAP02	TAB C2	2JPREGMA	P02 19	999-08-1	1T22:43:38	02:07:36
REGMAP03	TAB C2	2JPREGMA	P03 19	999-08-1	2T01:29:08	02:47:26
WHTOVL01	TAB C22	2JNWHTOV	L01 19	999-08-1	2T18:10:32	00:01:50

124:

 Filename
 Observation ID
 Start Time
 Duration

 RCTCAL01.TAB
 I24NPRCTCAL01
 1999-10-10T08:14:08
 00:01:17

 WAVEST01.TAB
 I24JPWAVEST01
 1999-10-10T09:04:03
 00:00:57

 LOKI_02.TAB
 I24IPLOKI_02
 1999-10-11T03:42:18
 00:37:31

PELE_N01.TAB	I24INPELE01	1999-10-11T04:22:42	00:03:59
PELE_S01.TAB	I24ISPELE_01	1999-10-11T04:27:47	00:02:07
PILLANS1.TAB	I24ISPILLAN01	1999-10-11T04:31:24 (0:00:31
PILLANN1.TAB	I24INPILLAN01	1999-10-11T04:32:01 (00:01:25
COLCHSS1.TAB	I24ISCOLCHS01	1999-10-11T04:34:31	00:00:26
COLCHSN1.TAB	I24INCOLCHS01	1999-10-11T04:35:03	00:01:25
ZAMAMAS1.TAB	I24ISZAMAMA01	1999-10-11T04:38:29	00:00:30
ZAMAMAN1.TAB	I24INZAMAMA01	1999-10-11T04:39:06	6 00:01:19
PROMTHS1.TAB	I24ISPROMTH01	1999-10-11T04:42:4	1 00:04:24
PROMTHN1.TAB	I24INPROMTH01	1999-10-11T04:47:1	1 00:01:16
COLCHSS2.TAB	I24ISCOLCHS02	1999-10-11T04:51:10	00:00:03
COLCHSN2.TAB	I24INCOLCHS02	1999-10-11T04:52:31	00:00:50
TOHIL_01.TAB	I24ISTOHIL_01	1999-10-11T04:54:39 (0:01:30
NTOHIL01.TAB	I24INNTOHIL01	1999-10-11T04:57:27	00:00:50
PROMTHS2.TAB	I24ISPROMTH02	1999-10-11T04:59:38	3 00:04:29
PROMTHN2.TAB	I24INPROMTH02	1999-10-11T05:05:2	5 00:06:58
ZAMAMAS2.TAB	I24ISZAMAMA02	1999-10-11T05:13:43	8 00:03:19
ZAMAMAN2.TAB	I24INZAMAMA02	1999-10-11T05:18:20	00:02:34
DORIANS1.TAB	I24ISDORIAN01	1999-10-11T05:22:12	00:00:07
DORIANN1.TAB	I24INDORIAN01	1999-10-11T05:23:37	00:00:50
AMSKGIS1.TAB	I24ISAMSKGI01	1999-10-11T05:25:47	00:03:18
AMSKGIN1.TAB	I24INAMSKGI01	1999-10-11T05:30:23	00:02:34
TERMAPS1.TAB	I24ISTERMAP01	1999-10-11T05:34:20	00:00:16
TERMAPN1.TAB	I24INTERMAP01	1999-10-11T05:35:54	00:01:16
REGION01.TAB	I24INREGION01	1999-10-11T06:09:54	00:31:58
PPLUME01.TAB	I24INPPLUME01	1999-10-11T06:47:38	00:04:59
PELEPM01.TAB	I24INPELEPM01	1999-10-11T08:06:10	00:04:59
REGION02.TAB	I24INREGION02	1999-10-11T10:45:56	00:16:24
GLOCOL01.TAB	I24ISGLOCOL01	1999-10-11T18:05:07	00:00:48
ECLIPS01.TAB	I24ISECLIPS01	1999-10-12T03:57:46 (00:05:14

I25:

Filename Obs	servation ID	Start Time	Duration	
RCTCAL01.TAB	125NPRCTCAL	1999-1	11-25T13:23:24	00:01:18
DRKMAP01.TAB	I25EPDRKMAF	01 1999 [.]	-11-25T14:13:1	9 01:29:09
H2O12001.TAB	I25EPH2O12001	1999-11	I-25T15:47:06	00:36:06
NOPOLE01.TAB	125JNNOPOLE	01 1999-	11-25T16:38:50	00:11:00
DARKBP01.TAB	125ESDARKBP	01 1999-	11-25T16:59:10	00:00:04
MOTTER01.TAB	125ESMOTTER	01 1999-	-11-25T17:01:10	00:00:02
SUBJUP01.TAB	I25JNSUBJUP0	1 1999-1	1-25T17:15:16	00:03:08
DGTM_01.TAB	I25EPDGTM()1 1999-´	11-25T17:33:20	01:01:03
GLOBAL01.TAB	125ESGLOBALC	1 1999-1	11-25T18:46:20	00:01:40
H2O40_02.TAB	I25EPH2O40_02	1999-11	I-25T18:49:00	00:31:00
EQUATR01.TAB	125JNEQUATR	01 1999-	11-25T19:25:42	00:06:35
GLOBAL01.TAB	I25JNGLOBAL0	1 1999-1	1-25T19:44:54	00:01:59

GLOBAL01.TAB	I25IPGLOBAL01	1999-11-25T22:54:02	01:07:53
EMAKNGS2.TAB	I25ISEMAKNG02	1999-11-26T04:39:52	00:01:30
EMAKNGN2.TAB	I25INEMAKNG02	1999-11-26T04:42:42	00:00:49
GIANTSS1.TAB	I25ISGIANTS01	1999-11-26T04:46:56	00:00:14
GIANTSN1.TAB	I25INGIANTS01	1999-11-26T04:48:30	00:01:40
CULANNS1.TAB	I25ISCULANN01	1999-11-26T04:53:00	00:01:40
CULANNN1.TAB	I25INCULANN01	1999-11-26T04:56:00	00:00:48
TERM01.TAB	I25ISTERM_01	1999-11-26T05:03:06	00:02:07
TERMAP01.TAB	I25INTERMAP01	1999-11-26T05:06:33	00:00:48
REGION01.TAB	I25INREGION01	1999-11-26T05:10:06	00:45:02
RCTCAL02.TAB	I25NPRCTCAL02	1999-11-26T08:26:02	00:04:22

127:

Filename Obs	servation ID S	tart Time	Duration	
RCTCAL01.TAB	I27NPRCTCAL01	2000-02-22	2T00:09:59 (00:01:17
LIMBRD01.TAB	I27JPLIMBRD01	2000-02-22	F01:53:28 01	1:05:18
LIMBRD02.TAB	I27JPLIMBRD02	2000-02-22	r04:54:07 00):26:45
DRKMAP01.TAB	I27IPDRKMAP01	2000-02-2	2T06:59:50	01:11:11
LOKI01.TAB	I27IPLOKI01	2000-02-22T1	1:21:43 00:4	7:30
DAEDAL01.TAB	I27IPDAEDAL01	2000-02-22	T12:25:25 0	0:38:07
LOKI_02.TAB	I27IPLOKI02	2000-02-22T1	3:06:51 00:1	8:03
LOKI03.TAB	I27IPLOKI03	2000-02-22T1	3:25:55 00:0	7:12
HRPELE01.TAB	I27INHRPELE01	2000-02-22	T13:35:07 0	0:05:01
PELE01.TAB	I27ISPELE_01	2000-02-22T	13:40:58 00:	00:11
MULNGU01.TAB	I27IPMULNGU01	2000-02-2	2T13:41:19	00:01:09
SAPPNG01.TAB	I27ISSAPPNG01	2000-02-22	2T13:47:01 (0:00:32
CHACC_01.TAB	I27ISCHACC_01	2000-02-22	2T13:49:04 0	0:01:03
PROMTHS1.TAB	I27ISPROMTH01	2000-02-2	2T13:51:05	00:00:42
MOSAIC01.TAB	I27INMOSAIC01	2000-02-22	T13:57:21 00	0:18:16
PROMTHN1.TAB	127INPROMTH02	2000-02-2	22T14:16:57	00:09:32
TOHIL_01.TAB	I27ISTOHIL_01	2000-02-22T1	4:27:46 00:0)0:32
PROMTH02.TAB	I27ISPROMTH02	2000-02-2	2T14:29:47	00:00:50
CAMAXTS1.TAB	I27ISCAMAXT01	2000-02-22	2T14:32:50 (00:01:41
CAMAXTN1.TAB	I27INCAMAXT01	2000-02-2	2T14:35:48	00:01:58
AMARANS1.TAB	I27ISAMARAN01	2000-02-2	2T14:39:55	00:00:40
AMARANN1.TAB	I27INAMARAN01	2000-02-2	2T14:41:51	00:11:09
ZALTRM01.TAB	I27ISZALTRM01	2000-02-22	T15:08:13 0	0:00:48
FROST_01.TAB	I27IPFROST_01	2000-02-22	Γ16:15:35 0 [·]	1:06:18
DGTM01.TAB	I27IPDGTM_01	2000-02-22	T17:25:28 0	0:38:44
RCTCAL02.TAB	I27NPRCTCAL02	2000-02-22	2T23:24:29 (00:01:17

G28:

Filename Observation ID Start Time Duration RCTCAL01.TAB G28NPRCTCAL01 2000-05-20T09:27:33 00:00:56

HIRES_01.TAB	G28GPHIRES_01	2000-05-20T09:59:15 00:11:08
SMOOTH01.TAB	G28GSSMOOTH01	2000-05-20T10:13:30 00:00:49
BRTDRK01.TAB	G28GSBRTDRK01	2000-05-20T10:14:26 00:00:54
NICHOL01.TAB	G28GSNICHOL01	2000-05-20T10:15:27 00:00:54
ARBELA01.TAB	G28GSARBELA01	2000-05-20T10:16:27 00:01:58
CALDRA01.TAB	G28GSCALDRA01	2000-05-20T10:18:29 00:02:50
FEATRE01.TAB	G28GNFEATRE01	2000-05-20T10:21:26 00:08:03
SMOOTH02.TAB	G28GSSMOOTH02	2000-05-20T10:29:36 00:00:54
BRTDRK02.TAB	G28GSBRTDRK02	2000-05-20T10:30:37 00:00:54
NICHOL02.TAB	G28GSNICHOL02	2000-05-20T10:31:37 00:00:54
CALDRA02.TAB	G28GSCALDRA02	2000-05-20T10:34:39 00:02:50
LMSCAN01.TAB	G28GNLMSCAN01	2000-05-20T10:37:37 00:11:58
SMTHDR01.TAB	G28GSSMTHDR01	2000-05-20T10:54:37 00:00:07
PERRIN01.TAB	G28GNPERRIN01	2000-05-20T12:02:33 00:07:58
GLOBAL01.TAB	G28GPGLOBAL01	2000-05-20T12:27:32 00:02:42
STP11401.TAB	G28EPSTP11401	2000-05-20T13:34:24 00:02:30
STP10302.TAB	G28EPSTP10302	2000-05-20T14:57:32 00:03:07
STP09003.TAB	G28EPSTP09003	2000-05-20T16:58:45 00:02:13
STP07704.TAB	G28EPSTP07704	2000-05-20T18:59:05 00:02:12
STP06105.TAB	G28EPSTP06105	2000-05-20T20:57:29 00:03:06
STP04506.TAB	G28EPSTP04506	2000-05-20T22:57:42 00:02:13
STP03007.TAB	G28EPSTP03007	2000-05-21T00:58:01 00:02:12
STP01808.TAB	G28EPSTP01808	2000-05-21T03:05:33 00:03:06
STP00609.TAB	G28EPSTP00609	2000-05-21T04:12:16 00:03:06
NSSTRP01.TAB	G28JPNSSTRP01	2000-05-21T04:20:59 00:21:44
DKSPOL01.TAB	G28JPDKSPOL01	2000-05-21T04:47:39 00:00:36
DKSPOT01.TAB	G28JPDKSPOT01	2000-05-21T04:48:27 02:09:00
WHTOVL01.TAB	G28JPWHTOVL01	2000-05-21T07:23:22 00:46:41
LIMBRD01.TAB	G28JPLIMBRD01	2000-05-21T08:21:39 00:53:14
LIMBRD02.TAB	G28JPLIMBRD02	2000-05-21T10:19:57 00:54:54
RCTCAL02.TAB	G28NPRCTCAL02	2000-05-21T11:59:03 00:01:19
STP05001.TAB	G28IPSTP05001	2000-05-21T12:24:26 00:02:53
STP04502.TAB	G28IPSTP04502	2000-05-21T13:04:01 00:02:41

G29:

Filename (Observation ID	Start Time	Duration	
RCTCAL01.TA	B G29NPRCTCA	L01 2000	D-12-28T07:30:03	00:01:17
HIRES_01.TAE	G29GPHIRES	01 2000-	12-28T07:54:38	00:25:17
NPOLE_01.TA	B G29GPNPOLE	_01 2000	D-12-28T08:19:56	00:09:39
TROS01.TA	B G29GPTROS_	_01 2000)-12-28T08:29:36	00:09:32
BARNRD01.TA	AB G29GPBARNF	RD01 200	00-12-28T08:39:08	3 00:15:04
PERRIN01.TAI	B G29GPPERRIN	101 2000	-12-28T08:56:29	00:04:53
AIRGLO01.TAI	B G29GSAIRGLC	001 2000 ⁻	-12-28T09:21:22	00:19:27
NICECL01.TAE	3 G29GPNICECL	01 2000-	12-28T09:45:33	00:11:44
ECLEGR01.TA	B G29GPECLEG	R01 200	0-12-28T09:58:34	00:12:23

CAPCOL01.TAB	G29GSCAPCOL01	2000-12-28T10:16:20	00:13:31
DARDAN01.TAB	G29GSDARDAN01	2000-12-28T10:31:30	00:02:55
REGION01.TAB	G29GNREGION01	2000-12-28T10:36:24	00:15:00
DGTM_01.TAB	G29GPDGTM_01	2000-12-28T10:54:57	01:48:07
GLOBAL01.TAB	G29CNGLOBAL01	2000-12-28T13:46:30	00:02:04
GLOBAL01.TAB	G29GNGLOBAL01	2000-12-28T17:18:51	00:09:51
GLOBAL02.TAB	G29GNGLOBAL02	2000-12-28T17:31:58	00:10:13
NEB01.TAB	G29JPNEB01	2000-12-28T18:40:26 C	2:03:08
STP12001.TAB	G29IPSTP12001	2000-12-28T21:42:36 00):03:22
GLOBAL03.TAB	G29GNGLOBAL03	2000-12-28T22:37:20	00:07:44
STP11002.TAB	G29IPSTP11002	2000-12-28T23:08:38 00):04:00
WATCH_01.TAB	G29INWATCH_01	2000-12-28T23:17:46	00:03:00
NWGRS_01.TAB	G29JPNWGRS_01	2000-12-29T01:02:47	02:02:57
GRWAKE01.TAB	G29JNGRWAKE01	2000-12-29T03:07:30	00:25:54
WATCH_02.TAB	G29INWATCH_02	2000-12-29T03:52:49	00:03:08
GRWAKE02.TAB	G29JNGRWAKE02	2 2000-12-29T03:59:54	00:14:11
HTSPOT01.TAB	G29JNHTSPOT01	2000-12-29T05:24:47	00:14:14
HTSPOT02.TAB	G29JNHTSPOT02	2000-12-29T06:02:12	00:16:06
NSSTRP01.TAB	G29JPNSSTRP01	2000-12-29T06:20:18	00:24:54
STP04703.TAB	G29IPSTP04703	2000-12-29T06:46:46 00):04:28
STP10801.TAB	G29EPSTP10801	2000-12-29T08:06:38 0	0:04:28
STP03704.TAB	G29IPSTP03704	2000-12-29T08:21:48 00):04:28
STP08302.TAB	G29EPSTP08302	2000-12-29T11:54:08 0	0:04:27
AURORA01.TAB	G29JNAURORA01	2000-12-29T12:50:44	00:12:06
GLOBAL01.TAB	G29ENGLOBAL01	2000-12-29T13:30:09	00:02:59
AURORA02.TAB	G29JNAURORA02	2000-12-29T13:50:22	00:13:02
AURORA03.TAB	G29JNAURORA03	2000-12-29T14:52:01	00:12:07
AURORA04.TAB	G29JNAURORA04	2000-12-29T15:52:41	00:12:59
GLOCOL01.TAB	G29ISGLOCOL01	2000-12-29T16:32:20	00:00:30
AURORA05.TAB	G29JNAURORA05	2000-12-29T16:52:22	00:12:58
STP05203.TAB	G29EPSTP05203	2000-12-29T17:24:40 0	0:03:33
AURORA06.TAB	G29JNAURORA06	2000-12-29T17:56:05	00:10:08
STP01705.TAB	G29IPSTP01705	2000-12-29T18:29:22 00):03:34
AURORA07.TAB	G29JNAURORA07	2000-12-29T19:14:58	00:12:56
PROMTH01.TAB	G29ISPROMTH01	2000-12-29T20:00:30	00:00:28
AURORA08.TAB	G29JNAURORA08	2000-12-29T20:15:37	00:12:57
STP03704.TAB	G29EPSTP03704	2000-12-29T20:48:54 0	0:03:33
RCTCAL02.TAB	G29NPRCTCAL02	2000-12-29T21:02:10	00:02:04

C30:

 Filename
 Observation ID
 Start Time
 Duration

 GLOBAL01.TAB
 C30IPGLOBAL01
 2001-05-23T16:30:12
 00:17:56

 WHTOVL01.TAB
 C30JPWHTOVL01
 2001-05-23T20:04:56
 00:36:30

 HIRES_01.TAB
 C30CPHIRES_01
 2001-05-25T11:14:37
 00:08:00

 EWSCAN01.TAB
 C30CPEWSCAN01
 2001-05-25T14:00:04
 00:01:56

EWSCAN02.TAB	C30CPEWSCAN02
NSPOLE01.TAB	C30CPNSPOLE01

I31:

Filename Ob	servation ID S	tart Time	Duration	
RCTCAL01.TAB	I31NPRCTCAL01	2001-08-	04T15:09:25	00:00:57
STP13501.TAB	I31CPSTP13501	2001-08-04	4T15:23:42	00:06:32
WHTOVL01.TAB	I31JPWHTOVL07	1 2001-08	-05T07:24:17	' 00:41:55
VORTEX01.TAB	I31JPVORTEX01	2001-08-	05T08:11:00	00:42:39
GLOBAL01.TAB	I31IPGLOBAL01	2001-08-0)6T00:19:23	01:36:37
PELEDK01.TAB	I31IPPELEDK01	2001-08-0	6T01:57:44	00:57:47
NPOLRG01.TAB	I31IPNPOLRG01	2001-08-	06T02:57:22	00:54:51
NSDRK_01.TAB	I31IPNSDRK_01	2001-08-0)6T03:56:41	00:09:46
LOKI01.TAB	I31IPLOKI_01	2001-08-06T	04:13:12 0	0:10:05
LEIKNG01.TAB	I31IPLEIKNG01	2001-08-06	T04:25:46	00:06:34
THERML01.TAB	I31INTHERML01	2001-08-	06T04:37:27	00:09:59
HSISUM01.TAB	I31INHSISUM01	2001-08-0	6T04:49:34	00:03:55
HIRES_01.TAB	I31IPHIRES_01	2001-08-06	T04:53:37 (0:06:06
SO2MAP01.TAB	I31INSO2MAP01	2001-08-	06T05:02:42	00:00:39
TVASHT01.TAB	I31INTVASHT01	2001-08-0	6T05:14:50	00:09:53
GISHBR01.TAB	I31INGISHBR01	2001-08-0	6T05:39:07	00:07:57
NSSTRP01.TAB	I31IPNSSTRP01	2001-08-0)6T05:57:23	00:16:34
AMRANI01.TAB	I31INAMRANI01	2001-08-0	6T06:20:33	00:15:07
REGION01.TAB	I31INREGION01	2001-08-0	6T06:50:55	01:12:46
DGTM_01.TAB	I31IPDGTM_01	2001-08-0)6T09:05:04	01:57:54
POLMAP01.TAB	I31IPPOLMAP01	2001-08-	06T12:30:30	00:28:52
STP03002.TAB	I31CPSTP03002	2001-08-00	6T14:13:42	00:06:15
STP01503.TAB	I31CPSTP01503	2001-08-0	7T01:49:21	00:04:00

132:

Filename Ob	servation ID S	tart Time	Duration	
RCTCAL01.TAB	I32NPRCTCAL01	2001-10	D-15T07:30:39	00:01:19
VORTEX01.TAB	I32JPVORTEX01	2001-10	D-15T07:47:11	00:49:57
VORTEX02.TAB	I32JPVORTEX02	2001-10	D-15T10:13:48	00:34:44
WHTOVL01.TAB	I32JPWHTOVL01	l 2001-1	0-15T11:00:19	00:44:43
VORTEX03.TAB	I32JPVORTEX03	2001-10	D-15T12:43:27	00:44:43
VORTEX04.TAB	I32JPVORTEX04	2001-10	D-15T13:29:57	00:44:44
DRKMAP01.TAB	I32IPDRKMAP01	2001-10	0-15T14:19:11	00:29:01
DRKMAP02.TAB	I32IPDRKMAP02	2001-10	0-15T19:18:26	01:02:22
LOKI_S01.TAB	I32ISLOKI_01	2001-10-15	5T20:46:46 00):00:12
COLCHS01.TAB	I32IPCOLCHS01	2001-10)-15T20:51:27	00:55:11
REGIONP1.TAB	I32IPREGION01	2001-10-	-15T21:53:29	00:56:46
BABBAR01.TAB	I32IPBABBAR01	2001-10	-15T22:51:05	00:59:33
RAPATR01.TAB	I32IPRAPATR01	2001-10	-15T23:51:45	00:28:48

THPELE01.TAB	I32INTHPELE01	2001-10-16T00:23:06 00:04:00
LOKI_P01.TAB	I32IPLOKI_01	2001-10-16T00:29:10 00:25:07
THLOKI01.TAB	I32INTHLOKI01	2001-10-16T00:54:24 00:10:09
PELE01.TAB	I32ISPELE_01	2001-10-16T01:04:38 00:02:57
THPELE02.TAB	I32INTHPELE02	2001-10-16T01:07:41 00:06:57
HIRESS01.TAB	I32IPHIRESS01	2001-10-16T01:14:40 00:09:11
TELGNS01.TAB	I32ISTELGNS01	2001-10-16T01:23:52 00:03:56
THERML01.TAB	I32INTHERML01	2001-10-16T01:27:54 00:03:57
EMAKNGS1.TAB	I32ISEMAKNG01	2001-10-16T01:31:57 00:01:25
TELGNS02.TAB	I32ISTELGNS02	2001-10-16T01:33:22 00:01:48
TOHIL_01.TAB	I32ISTOHIL_01	2001-10-16T01:35:17 00:05:40
EMAKNGN1.TAB	I32INEMAKNG01	2001-10-16T01:40:57 00:12:09
TUPAN_01.TAB	I32ISTUPAN_01	2001-10-16T01:56:10 00:02:59
ITUPAN01.TAB	I32INITUPAN01	2001-10-16T01:59:09 00:08:06
TVASHT01.TAB	I32ISTVASHT01	2001-10-16T02:08:35 00:00:14
ICHAAC01.TAB	I32INICHAAC01	2001-10-16T02:10:14 00:11:16
GSHBAR01.TAB	I32ISGSHBAR01	2001-10-16T02:21:32 00:00:14
PROMTH01.TAB	I32INPROMTH01	2001-10-16T02:24:24 00:12:11
TERMIN01.TAB	I32ISTERMIN01	2001-10-16T02:38:38 00:00:49
TERMIN02.TAB	I32ISTERMIN02	2001-10-16T02:40:48 00:00:48
EWSCAN01.TAB	I32IPEWSCAN01	2001-10-16T02:46:38 00:11:26
POLMAP01.TAB	I32IPPOLMAP01	2001-10-16T03:01:39 00:08:46
REGIONN1.TAB	I32INREGION01	2001-10-16T03:13:00 01:04:36
POLDAY01.TAB	I32IPPOLDAY01	2001-10-16T04:18:31 00:27:45
AMALTH01.TAB	I32SSAMALTH01	2001-10-16T04:53:07 00:00:01
POLMAP02.TAB	I32IPPOLMAP02	2001-10-16T04:54:57 01:33:23
LIMBRD01.TAB	I32JPLIMBRD01	2001-10-16T06:32:53 00:27:51
REGION02.TAB	I32INREGION02	2001-10-16T07:03:33 00:35:21
GLOBAL01.TAB	I32EPGLOBAL01	2001-10-16T08:02:54 00:06:46
LIMBRD02.TAB	I32JPLIMBRD02	2001-10-16T15:18:50 00:27:50
RCTCAL02.TAB	I32NPRCTCAL02	2001-10-17T16:12:02 00:01:18

133:

Filename	Observatio	on ID	Start	Time	Durat	on		
RCTCAL01.TA	AB I33NI	PRCTCAL	.01	2002-01	-16T22:	59:26	00:01:17	
DRKMAP01.T	AB I33IF	PDRKMAF	' 01	2002-01	-16T23:	22:02	00:09:26	
PROMTH01.T	ab i33if	PPROMTH	101	2002-01	1-17T13	06:44	00:16:00	
EWSCAN01.T	AB I33I	PEWSCA	V01	2002-0	1-17T13	:29:21	00:04:13	
MARDUK01.T	'AB 1331F	PMARDU	(01	2002-07	1-17T13	36:23	00:04:46	
GLOBAL01.T/	AB I33JN	IGLOBAL	01	2002-01	-19T23:4	16:46	00:23:12	
GLOBAL02.T/	AB I33JN	IGLOBAL	02	2002-01	-20T03:0)6:58	00:20:10	
GLOBAL03.TA	AB I33JN	IGLOBAL	03	2002-01	-20T06:2	28:10	00:27:10	
FEATRK01.TA	AB I33JS	SFEATRK()1 2	2002-01-	20T19:0	9:35	00:00:26	
FEATRK02.TA	AB I33JS	SFEATRK()2 2	2002-01-	20T19:3	8:54	00:00:26	
FEATRK03.TA	AB I33JS	SFEATRK()3 2	2002-01-	20T20:0	8:14	00:00:24	

FEATRK11.TAB	I33JSFEATRK11	2002-01-20T20:40:35	00:00:25
FEATRK12.TAB	I33JSFEATRK12	2002-01-20T21:09:54	00:00:25
FEATRK13.TAB	I33JSFEATRK13	2002-01-20T21:39:14	00:00:26
FEATRK21.TAB	I33JSFEATRK21	2002-01-20T22:11:36	00:00:24
FEATRK22.TAB	I33JSFEATRK22	2002-01-20T22:40:54	00:00:25
FEATRK23.TAB	I33JSFEATRK23	2002-01-20T23:10:14	00:00:24
FEATRK31.TAB	I33JSFEATRK31	2002-01-21T05:10:11	00:00:24
FEATRK32.TAB	I33JSFEATRK32	2002-01-21T05:39:30	00:00:20
FEATRK33.TAB	I33JSFEATRK33	2002-01-21T06:08:53	00:00:21
FEATRK41.TAB	I33JSFEATRK41	2002-01-21T06:41:11	00:01:27
FEATRK42.TAB	I33JSFEATRK42	2002-01-21T07:10:30	00:01:26
FEATRK43.TAB	I33JSFEATRK43	2002-01-21T07:39:50	00:01:26
FEATRK51.TAB	I33JSFEATRK51	2002-01-21T08:12:11	00:00:24
FEATRK57.TAB	I33JSFEATRK57	2002-01-21T08:41:30	00:00:25
FEATRK53.TAB	I33JSFEATRK53	2002-01-21T09:10:50	00:00:24

Ancillary Data

=================

The housekeeping and science data in the full PPR minor frame records contain all of the commanded parameters and all variable parameter values that completely specify the instrument status, including the position within various measurement mode cycles. When observations are made using the PPR Burst-to-Tape record mode, the second byte of the PPR housekeeping is deleted before the data are stored in the CDS memory buffer. This byte contains the commanded values for the photopolarimetry gain, radiometry gain, and number of successive samples to be taken at each filter wheel position before stepping to the next position. These three parameters are set by command and do not change during instrument operation unless reset by a new command. Actual values can be obtained from the Galileo Sequence of Events File (SEF), which is archived in the PDS by the Galileo Project and which indicates timing of the PPR commands and the commanded parameter values. In processing to generate the present reduced science data, the SEF or equivalent PPR-team-maintained command records are used to manually input the actual values for these three parameters.

The target body for each observation is indicated in the observation ID and in the label file for each data file. Observed location on the target body and observing geometry (viz., target range and incidence, emission, and phase angles) for each measurement sample within an observation sequence must be obtained from the SPICE system for the spacecraft clock time corresponding to the measurement. Note that the spacecraft clock RIM and MOD91 counts for each record of the R_EDR data set correspond to the time that the respective PPR memory buffer

was readout by the CDS. The actual time at which the measurement samples were acquired is earlier than that time by varying amounts depending on instrument operation mode and the position of the data sample in the PPR buffer. In the processing to generate the present reduced science data, the appropriate adjusted spacecraft clock time is determined and represented as adjusted RIM and MOD91 counts, which are the first two entries in each RDR data set record. The SPICE data (kernels) and system tools are archived in PDS by the Galileo Project. The present reduced science data set includes geometric information (observed location on target body, observing geometry, range, etc.) as determined by the PPR team using the SPICE system. Subdirectory GEOMETRY on this volume contains a *.GEO file with that information for each *.TAB reduced science data file.

Calibration coefficients to convert PPR photometry and polarimetry measurements of intensity from DN values at a particular instrument gain level to absolute units are based upon ground calibration measurements. Thermal radiometry measurement conversion to brightness temperature is a substantially more complex reduction process based upon various calibration tests performed before launch, but was always expected to require significant iteration based upon in-flight observations of the PPR radiometric calibration target (RCT), whose temperature is monitored and readout in the PPR science data stream. The ancillary data in CALINFO.TXT provides the photometry and polarimetry calibration coefficients and tabulates the results of the in-flight RCT observations.

Coordinate System

For PPR observations that use the Burst-to-Tape record mode, the right ascension and declination angles of the scan platform instrument boresight direction are merged with the PPR housekeeping and science data and appear as two columns of each RDR data set record. All other record modes include the scan platform pointing in the AACS section of the Low Rate Science blocks, so it is necessary to use the SPICE system to obtain these angles for those observations. The SPICE system kernels contain Galileo spacecraft ephemeris, scan platform pointing, and instrument data necessary for providing target body coordinates and observing geometry as a function of time, using IAU standard coordinate systems as specified in the SPICE documentation. As indicated above, geometry information generated by the PPR science team using the SPICE system is provided in files contained in the GEOMETRY subdirectory of this volume.

The reduced PPR polarimetry observations provide the radiance, or intensity, the linear polarization degree, and the direction of the polarization of the light scattered-reflected from the viewed target. Polarization direction is the plane in which the maximum electric field vector of the incident flux lies and in the present RDR data is referenced to the PPR instrument baseplate. In the case of a photon scattered or reflected just once, i.e., single scattering, the polarization direction must lie precisely either in the scattering plane or perpendicular to it, where the scattering plane is the plane defined by the vector between the Sun and the observed point and the vector from the spacecraft to the observed point. Even in the more general multiple scattering case, the polarization direction is rarely more than a few degrees away from being either parallel or perpendicular to the scattering plane unless the linear polarization is close to zero, where the direction of course becomes undefined. As a consequence, polarimetry data will typically show polarization direction angles clustered, either about a single angle or two angles separated by about 90 degrees. Because of this approximate discrete two-valued nature rather than continuous over the full range of angles, linear polarization is often presented as a signed value, with negative values corresponding to the situation where the direction lies in or very near the scattering plane.

The twist angle for the scan platform is the third Euler angle of the three that represent the C-matrix:

CMAT = [twist] [pi/2 - DEC] [RA] $3 \qquad 2 \qquad 3$

The SPICE routine M2EUL can be used to recover Euler angles from a C-matrix.

Please see the C-Kernel or Rotations 'Required Reading' in the NAIF SPICE Toolkit documentation for further information.

CONFIDENCE_LEVEL_NOTE = "

Confidence Level Overview

The PPR RDR data set represents all PPR data for the Jupiter Phase Nominal Mission and GEM and GMM extended tours as recovered from the Galileo Project ground system, with the exception of the observations during the C20 encounter that would be meaningless owing to the anomalous PPR radiometry mode behavior. When multiple passes of the DMS tape were downlinked, the data were merged to provide the most complete sequences.

Data Coverage and Quality

The RDR data set is organized into a separate file for each PPR observation or OAPEL as listed in the Data section under DATA_SET_DESC above. The start times and durations in that set of lists correspond to the actual times of the first and last records returned for the particular OAPEL rather than the planned times, if different. In a few cases, the data begin later or end earlier than planned owing to limitations on DMS tape or bits-to-ground capability or losses during downlink and ground processing. There are, in addition, a few OAPELs that have coverage gaps.

Parity bits generated by the PPR instrument processor and placed in the PPR housekeeping and science data were monitored in the processing of the EDR data and indicate that there appear to be no instances of individual bit changes in the data stream. For PPR observations that use a DMS tape record mode employing the Low Rate Science format, any data gaps caused by telemetry dropouts appear as a loss of entire PPR minor frame records. In contrast, for the Burst-to-Tape record mode, the channelization procedure used in storing the PPR data stream in the CDS memory buffer can lead to the return of PPR minor frame records with missing bytes in which zero-fill is used by the ground system. The PPR science data samples use a non-zero 'dark' level offset larger than any expected noise. Thus, zero is not a legitimate value for these samples, for which the PPR processor uses a twoscompliment mode that when converted from the raw data stream to the RDR format for the basic data samples in DN will appear as 4095 if zero-fill has occurred.

As described earlier, data reduction of the thermal radiometry entails the correction of the raw pyroelectric detector output for contributions to the measured flux by emission, albeit small, from internal elements such as mirrors and radiometric stops. These corrections use the element temperatures monitored by the thermistors along with calibration factors determined through ground thermal vacuum tests in which each element was in turn heated by several degrees to observe the sensitivity to that particular element. The corrected net thermal radiance is then converted to a brightness temperature in Kelvins. In-flight observations of the PPR radiometric calibration target (RCT), whose temperature is monitored and readout in the PPR science data stream, reveal that the coefficients used in the basic reduction to date require re-examination because the agreement between the reduced brightness temperature of the RCT and the measured value is variable, with the former generally too low, in some cases by as much as 7.0 degrees. During GEM and GMM phases, the sign of the difference was less systematic, perhaps owing to much increased noise levels, especially for those orbits with the high radiation environment closer to Jupiter. The ancillary data set, CALINFO.TXT, tabulates the results of the in-flight RCT observations.

Noise in the PPR radiometry measurements is due to inherent instrument noise caused by the response of the pyroelectric detector to small fluctuations of the thermal state in the region of the detector and noise caused by high-energy radiation (presumably particles) impacting the detector. The former, which we shall call instrument noise, is of order 1-2 DN at radiometry gain level 2 for the typical instrument operating temperature of -20 to -15 degrees Celsius. Radiation noise is assumed to be the perturbation in the pyroelectric detector output caused by the very short interaction of the high-energy particle with the detector and can be either a positive or negative change depending on the part of the chopper cycle during which it occurs, i.e., whether scene or space is being viewed. Of course, the contribution due to radiation noise is guite variable, with generally increased noise with decreasing distance of the spacecraft from Jupiter. During the mission phase through E11, radiation noise at gain level 2 was typically 2-10 DN, but it occasionally hit higher peak levels. Throughout the GEM and GMM phases, the radiation noise was generally higher, with typical values as large as 20-30 DN in some cases. At a gain level 2 for observed brightness temperatures of order 130 K, a 2 DN change in the radiometry measurement corresponds to a brightness temperature change of about 1-2 K depending on the band. As a consequence, most PPR observations were designed to permit averaging of at least four successive samples without degrading spatial resolution. However, even with averaging, noise remains a problem in many cases and one should use caution with respect to both the absolute accuracy and the precision of the PPR radiometry data.

Limitations

===========

As described in the Data Set Overview section of DATA_SET_DESC above, the PPR instrument exhibited anomalous behavior with the filter wheel becoming stuck at a single radiometry position midway through the G1 encounter. While a recovery sequence involving thermal cycling of the instrument succeeded at the end of the E4 encounter, an operational mode different from that originally planned was then used during the remainder of the Jupiter Phase Nominal Mission and the GEM and GMM extended tours to avoid having to step through the position at which the filter wheel stuck more than on a limited number of occasions. As a consequence, many planned OAPELs were used with a somewhat different science strategy than that originally intended and some OAPEL names may seem slightly inconsistent with the actual observation. It should be noted that during encounter C20, the PPR exhibited guite anomalous behavior in radiometry measurements. All of the radiometry data samples were clustered at a DN value of 1412, slightly above the typical dark-level offset, and showed an extremely small scatter well below the typical noise level. This behavior was interpreted as being consistent with a failed radiometry detector or pre-amplifier. A PPR heating sequence was thus scheduled early in encounter C21 based upon the hope that one possible cause, debonding in the detector, might be at least partially reversed by high temperatures. Data playback from C21 (and all subsequent encounters) showed that the radiometry function had essentially recovered to nominal performance.

As noted earlier, the spacecraft clock RIM and MOD91 counts for each record of the R EDR data set correspond to the time that the respective PPR memory buffer was readout by the CDS. The actual time at which the measurement samples were acquired is earlier than that time by varying amounts depending on instrument operation mode and the position of the data sample in the PPR buffer. In the processing to generate the present reduced science data, an appropriate adjusted spacecraft clock time is determined and represented as adjusted RIM and MOD91 counts, which are the first two entries in each RDR data set record. The most precise such time adjustment would require knowledge not only of the known sampling times for each portion of a cycle, but also the exact phase of the cycle with respect to the minor frame, or MOD91 period. Since that phase is dependent upon the precise timing of PPR power on and commanded mode changes, it would have to be determined empirically from the detailed pattern of PPR buffer redundancies, which is in fact not feasible for short data spans. Accordingly, the time adjustment is made without taking account of the phase, with the consequence that the adjusted times may be in error by as much as one minor frame period of two-thirds of a second.